Skip to main content
Log in

A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth’s Gravity Field

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

We propose a concept for future space gravity missions using cold atom interferometers for measuring the diagonal elements of the gravity gradient tensor and the spacecraft angular velocity. The aim is to achieve better performance than previous space gravity missions due to a very low white noise spectral behavior and a very high common mode rejection, with the ultimate goals of determining the fine structures of the gravity field with higher accuracy than GOCE and detecting time-variable signals in the gravity field better than GRACE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Tapley, B., et al.: GRACE measurements of mass variability in the Earth system, Science (New York NY) 305(5683), 503505 (2004)

  • Reigber, C., et al.: The CHAMP geopotential mission. Bolletino di Geosica Teorica ed Applicata 40, 285–289 (1999)

    Google Scholar 

  • Floberghagen, R., et al.: Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J. Geodesy 85, 749–758 (2011)

    Article  Google Scholar 

  • Sheard, B., et al.: Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geodesy 86(12), 1083–1095 (2012)

    Article  Google Scholar 

  • Silvestrin, P., et al.: The future of the satellite gravimetry after the GOCE mission. Int. Assoc. Geodesy Symp. 136, 223–230 (2012)

    Article  Google Scholar 

  • Zhu, Z., et al.: Electrostatic gravity gradiometer design for the future mission. Adv. Space Res. 51, 2269–2276 (2013)

    Article  Google Scholar 

  • Peters, A., et al.: High-precision gravity measurements using atom interferometry. Metrologia 38, 25–61 (2001)

    Article  Google Scholar 

  • Sorrentino, F., et al.: Sensitivity limits of a Raman atom interferometer as a gravity gradiometer. Phys. Rev. A 89, 023607 (2014)

    Article  Google Scholar 

  • Wu, X.: Gravity gradient survey with a mobile atom interferometer, Ph.D. dissertation, Stanford University (2009)

  • Bidel, Y., et al.: Compact cold atom gravimeter for field applications. App. Phys. Let. 102 (2013)

  • Yu, N., et al.: Development of an atom-interferometer gravity gradiometer for gravity measurement from space. Appl. Phys. B 84, 647 (2006)

    Article  Google Scholar 

  • Sorrentino, F., et al.: A compact atom interferometer for future space missions. Microgravity Sci. Technol. 22(4), 551–561 (2010)

    Article  MathSciNet  Google Scholar 

  • Geiger, R., et al.: Detecting inertial effects with airborne matter-wave interferometry. Nat. Commun. 2, 474 (2011)

    Article  Google Scholar 

  • Müntinga, H., et al.: Interferometry with bose-einstein condensates in microgravity. Phys. Rev. Lett. 110, 093602 (2013)

    Article  Google Scholar 

  • Jiang, Z., et al.: On the gravimetric contribution to the redefinition of the kilogram. Metrologia 50, 452–471 (2013)

    Article  Google Scholar 

  • Bonin, A., et al.: Simultaneous dual-species matter-wave accelerometer. Phys. Rev. A 88, 043615 (2013)

    Article  Google Scholar 

  • Barrett, B., et al.: Mobile and Remote Inertial Sensing with Atom Interferometers, Proceedings of the Enrico Fermi International School of Physics Enrico Fermi, Course 188,Varenna (2013)

  • Dickerson, S.M., et al.: Multiaxis Inertial Sensing with Long-Time Point Source Atom Interferometry. Phys. Rev. Lett. 111, 083001 (2013)

    Article  Google Scholar 

  • Canuel, B., et al.: Six-Axis Inertial Sensor Using Cold-Atom Interferometry. Phys. Rev. Lett. 97, 010402 (2006)

    Article  Google Scholar 

  • Kasevich, M.A., Chu, S.: Atomic interferometry using stimulated Raman transitions. Phys. Rev. Lett. 67, 181–184 (1991)

    Article  Google Scholar 

  • Lévèque, T., et al.: Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. Phys. Rev. Lett. 103, 080405 (2009)

    Article  Google Scholar 

  • Giese, E., et al.: Double Bragg diffraction: A tool for atom optics. Phys. Rev. A 88, 053608 (2013)

    Article  Google Scholar 

  • Tino, G.M., et al.: Precision Gravity Tests with Atom Interferometry in Space. Nucl. Phys. B (Proc. Suppl.) 243-244, 203–217 (2013)

    Article  Google Scholar 

  • Bordé, C.J.: Theoretical tools for atom optics and interferometry. C.R. Acad. Sci. Paris, t.2 Srie IV, 509–530 (2001)

    Google Scholar 

  • Roura, A., et al.: Overcoming loss of contrast in atom interferometry due to gravity gradients (2014). arXiv:1401.7699v1

  • Biedermann, G.W., et al.: Low-noise simultaneous fluorescence detection of two atomic states. Opt. Lett. 34, 3 (2009)

    Article  Google Scholar 

  • Schoser, J., et al.: Intense source of cold Rb atoms from a pure two-dimensional magneto-optical trap. Phys. Rev. A 66, 023410 (2002)

    Article  Google Scholar 

  • Chiow, S.W., et al.: 102hk large area atom interferometers. PRL 107, 130403 (2011)

    Article  Google Scholar 

  • van Zoest, T., et al.: Bose-Einstein Condensation in Microgravity. Science 328(5985), 1540–1543 (2010)

    Article  Google Scholar 

  • Louchet-Chauvet, A., et al.: The influence of transverse motion within an atomic gravimeter. New. J. Phys. 13, 065025 (2011)

    Article  Google Scholar 

  • Gross, C.: Spin, squeezing entanglement and quantum metrology with Bose-Einstein condensates. J. Phys. B: At. Mol. Opt. Phys. 45, 103001 (2012)

    Article  Google Scholar 

  • Haine, S.A.: Information-recycling beam splitters for quantum enhanced atom interferometry. Phys. Rev. Lett. 110, 053002 (2013)

    Article  Google Scholar 

  • Vanier, J.: Transfer of frequency stability from an atomic frequency reference to a quartz-crystal oscillator. IEEE Trans. Instrum. Meas. 28, 3 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge useful discussions with Bruno Leone during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Carraz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carraz, O., Siemes, C., Massotti, L. et al. A Spaceborne Gravity Gradiometer Concept Based on Cold Atom Interferometers for Measuring Earth’s Gravity Field. Microgravity Sci. Technol. 26, 139–145 (2014). https://doi.org/10.1007/s12217-014-9385-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-014-9385-x

Keywords

Navigation