Skip to main content
Log in

Reconstruction of static line images with reduced speckle using interlaced holograms for holographic laser cutting

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A hologram can be used for high-power laser processing applications such as cutting, drilling, patterning, or welding. However, not much progress has been made in cutting application compared to the others, because it requires optical reconstruction of static and uniform line images using holograms which have a high damage threshold. These static and uniform line images are difficult to be reconstructed with a single hologram, since they usually suffer from speckle between neighboring spots. We propose a method to reconstruct reduced-speckle static line images using two interlaced holograms which reconstruct odd and even pixel line images, corresponding to two orthogonal polarizations. Then, the two orthogonally polarized line images are superposed for interlacing in the image plane. The proposed method was studied by numerical simulations and demonstrated experimentally. The experimental results show that speckle contrast decreased by about one-third, compared to that of a non-interlaced hologram. This method can be applied also for complex-shaped images which include curved lines as well as straight lines, and we have a plan for laser cutting with this method in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.M. Steen, J. Mazumder, Laser Material Processing, 4th edn. (Springer, New York, 2010)

    Book  Google Scholar 

  2. G. Dearden, Z. Kuang, D. Liu, W. Perrie, S.P. Edwardson, K.G. Watkins, Phys. Procedia 39, 650 (2012)

    Article  ADS  Google Scholar 

  3. M. Ekberg, M. Larsson, A. Bolle, S. Hård, Appl. Opt. 30, 3604 (1991)

    Article  ADS  Google Scholar 

  4. Y. Hayasaki, T. Sugimoto, A. Takita, N. Nishida, Appl. Phys. Lett. 87, 1 (2005)

    Article  Google Scholar 

  5. Z. Kuang, W. Perrie, J. Leach, M. Sharp, S.P. Edwardson, M. Padgett, G. Dearden, K.G. Watkins, Appl. Surf. Sci. 255, 2284 (2008)

    Article  ADS  Google Scholar 

  6. M. Silvennoinen, J. Kaakkunen, K. Paivasaari, P. Vahimaa, Phys. Procedia 41, 693 (2013)

    Article  ADS  Google Scholar 

  7. C. Zhang, Y. Hu, J. Li, Z. Lao, J. Ni, J. Chu, W. Huang, D. Wu, Appl. Phys. Lett. 105, 221104 (2014)

    Article  ADS  Google Scholar 

  8. Technical Information, “LCOS-SLM X10468 series”.http://www.hamamatsu.com/sp/hpe/community/lcos/tech_note/LCOS_SLM_Tech_Info.pdf

  9. R.M. Wood, R.T. Taylor, R.L. Rouse, Opt. Laser Technol. 7, 105 (1975)

    Article  ADS  Google Scholar 

  10. R.W. Gerchberg, W.O. Saxton, Optik 35, 237 (1972)

    Google Scholar 

  11. J. Bengtsson, Appl. Opt. 33, 6879 (1997)

    Article  ADS  Google Scholar 

  12. J. Amako, H. Miura, T. Sonehara, Appl. Opt. 34, 3165 (1995)

    Article  ADS  Google Scholar 

  13. L. Golan, S. Shoham, Opt. Express 17, 1330 (2009)

    Article  ADS  Google Scholar 

  14. J.P. Parry, R.J. Beck, J.D. Shephard, D.P. Hand, Appl. Opt. 50, 1779 (2011)

    Article  ADS  Google Scholar 

  15. Y. Takaki, M. Yokouchi, Opt. Express 19, 7567 (2011)

    Article  ADS  Google Scholar 

  16. T. Nomura, M. Okamura, E. Nitanai, T. Numata, Appl. Opt. 47, D38 (2008)

    Article  Google Scholar 

  17. H. Aagedal, M. Schmid, T. Beth, S. Teiwes, F. Wyrowski, J. Mod. Opt. 43, 1409 (1996)

    Article  ADS  Google Scholar 

  18. S. Hasegawa, Y. Hayasaki, Opt. Express 21, 2284 (2013)

    Article  Google Scholar 

  19. J.W. Goodman, J. Opt. Soc. Am. 66, 1145 (1976)

    Article  ADS  Google Scholar 

  20. H.J. Kong, S. Park, H. Ahn, H. Lee, J. Oh, J.S. Kim, Proc. SPIE 9342, 93421N (2015)

    ADS  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Civil Military Technology Cooperation Center (CMTC) of Korea under contract 12-DU-EN-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwihyeong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H., Park, S., Jeon, B.G. et al. Reconstruction of static line images with reduced speckle using interlaced holograms for holographic laser cutting. Appl. Phys. B 122, 192 (2016). https://doi.org/10.1007/s00340-016-6472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6472-2

Keywords

Navigation