Skip to main content
Log in

Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new experimental configuration is introduced for simultaneous recording of Raman and laser-induced breakdown spectroscopy (LIBS) in a single spectrum. A laser pulse is divided into two beams by a Glan–Taylor prism. By focusing one beam to the sample surface, micro-plasma is created and LIBS signal is emitted. The other beam is directed to the same point of the sample, but does not focused. The scattered light due to the second laser beam is mixed with the plasma emission and is recorded in a single spectrum. Atomic and molecular spectra of some minerals and chemical samples are recorded by the mentioned setup. Due to the high-plasma quenching in liquids, LIBS signals are not detected for organic liquid samples, instead a strong stimulated Raman signal is appeared, and as a result, an overlay of ordinary Raman with stimulated Raman is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. R. Murphy, Characterization of thin biological films by Raman and Fourier transform infrared spectroscopy, University of Georgia (2004)

  2. A.A. Bol’Shakov, J.H. Yoo, C. Liu, J.R. Plumer, R.E. Russo, Laser-induced breakdown spectroscopy in industrial and security applications. Appl. Opt. 49, C132–C142 (2010)

    Article  Google Scholar 

  3. G. BazalgetteCourrèges-Lacoste, B. Ahlers, F.R. Pérez, Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to Mars. Spectrochim. Acta A Mol. Biomol. Spectrosc. 68, 1023–1028 (2007)

    Article  ADS  Google Scholar 

  4. D. R. Lenski, Materials for large-area electronics: characterization of pentacene and graphene thin films by ac transport, Raman spectroscopy, and optics, University of Maryland. http://hdl.handle.net/1903/11118, (2010)

  5. S.K. Sharma, P.G. Lucey, M. Ghosh, H.W. Hubble, K.A. Horton, Stand-off Raman spectroscopic detection of minerals on planetary surfaces. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 59, 2391–2407 (2003)

    Article  ADS  Google Scholar 

  6. J. Parker, S. Thompson, A. Lennie, J. Potter, C. Tang, A study of the aragonite-calcite transformation using Raman spectroscopy, synchrotron powder diffraction and scanning electron microscopy. CrystEngComm 12, 1590–1599 (2010)

    Article  Google Scholar 

  7. J.L. Gottfried, F.C. De Lucia, C.A. Munson, A.W. Miziolek, Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects. Anal. Bioanal. Chem. 395, 283–300 (2009)

    Article  Google Scholar 

  8. V. Juvé, R. Portelli, M. Boueri, M. Baudelet, J. Yu, Space-resolved analysis of trace elements in fresh vegetables using ultraviolet nanosecond laser-induced breakdown spectroscopy. Spectrochim. Acta B 63, 1047–1053 (2008)

    Article  ADS  Google Scholar 

  9. A.W. Miziolek, V. Palleschi, I. Schechter, Laser induced breakdown spectroscopy (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  10. I. Osticioli, N.F.C. Mendes, A. Nevin, F.P.S.C. Gil, M. Becucci, E. Castellucci, Analysis of natural and artificial ultramarine blue pigments using laser induced breakdown and pulsed Raman spectroscopy, statistical analysis and light microscopy. Spectrochim. Acta A 73, 525–531 (2009)

    Article  ADS  Google Scholar 

  11. A. Giakoumaki, I. Osticioli, D. Anglos, Spectroscopic analysis using a hybrid LIBS-Raman system. Appl. Phys. A Mater. Sci. Process. 83, 537–541 (2006)

    Article  ADS  Google Scholar 

  12. M. Castillejo, M. Martín, D. Silva, T. Stratoudaki, D. Anglos, L. Burgio, R. Clark, Analysis of pigments in polychromes by use of laser induced breakdown spectroscopy and Raman microscopy. J. Mol. Struct. 550, 191–198 (2000)

    Article  ADS  Google Scholar 

  13. L. Burgio, K. Melessanaki, M. Doulgeridis, R. Clark, D. Anglos, Pigment identification in paintings employing laser induced breakdown spectroscopy and Raman microscopy. Spectrochim. Acta, Part B 56, 905–913 (2001)

    Article  ADS  Google Scholar 

  14. R. Bruder, V. Detalle, C. Coupry, An example of the complementarity of laser-induced breakdown spectroscopy and Raman microscopy for wall painting pigments analysis. J. Raman Spectrosc. 38, 909–915 (2007)

    Article  ADS  Google Scholar 

  15. M. Hoehse, D. Mory, S. Florek, F. Weritz, I. Gornushkin, U. Panne, A combined laser-induced breakdown and Raman spectroscopy Echelle system for elemental and molecular microanalysis. Spectrochim. Acta Part B 64, 1219–1227 (2009)

    Article  ADS  Google Scholar 

  16. R.C. Wiens, S.K. Sharma, J. Thompson, A. Misra, P.G. Lucey, Joint analyses by laser-induced breakdown spectroscopy (LIBS) and Raman spectroscopy at stand-off distances. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 61, 2324–2334 (2005)

    Article  ADS  Google Scholar 

  17. B.J. Marquardt, D.N. Stratis, D.A. Cremers, S.M. Angel, Novel probe for laser-induced breakdown spectroscopy and Raman measurements using an imaging optical fiber. Appl. Spectrosc. 52, 1148–1153 (1998)

    Article  ADS  Google Scholar 

  18. A.R. Boyain-Goitia, D. Beddows, B.C. Griffiths, H.H. Telle, Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy. Appl. Opt. 42, 6119–6132 (2003)

    Article  ADS  Google Scholar 

  19. H. Soleimaninejad, F. Matroodi, S. Tavassoli, Raman spectroscopy of iranian region calcite using pulsed laser: an approach of fluorescence suppression by time-gating method, J. Spectrosc. (2013). doi:10.1155/2013/254964

  20. J.R. Lakowicz, I. Gryczyski, J. Kuba, V. Bogdanov, Light quenching of fluorescence: a new method to control the excited state lifetime and orientation of fluorophores. Photochem. Photobiol. 60, 546–562 (1994)

    Article  Google Scholar 

  21. S. Sharma, A. Misra, P. Lucey, R. Wiens, S. Clegg, Combined remote LIBS and Raman spectroscopy at 8.6 m of sulfur-containing minerals, and minerals coated with hematite or covered with basaltic dust. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 68, 1036–1045 (2007)

    Article  ADS  Google Scholar 

  22. S.K. Sharma, A.K. Misra, P.G. Lucey, R.C.F. Lentz, A combined remote Raman and LIBS instrument for characterizing minerals with 532 nm laser excitation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73, 468–476 (2009)

    Article  ADS  Google Scholar 

  23. J. Moros, J.A. Lorenzo, P. Lucena, L.M. Tobaria, J.J. Laserna, Simultaneous raman spectroscopy − laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform. Anal. Chem. 82, 1389–1400 (2010)

    Article  Google Scholar 

  24. J. Moros, J. Lorenzo, J. Laserna, Standoff detection of explosives: critical comparison for ensuing options on Raman spectroscopy–LIBS sensor fusion. Anal. Bioanal. Chem. 400, 3353–3365 (2011)

    Article  Google Scholar 

  25. A. A. I. Buzgar N., Buzatu A., “Romanian Database of Raman Spectroscopy (http://rdrs.uaic.ro),” (2009)

  26. NIST Chemistry WebBook, NIST Standard Reference Database Number 69 (National Institute of Standards and Technology, 2005)

  27. J.E. Sansonetti, W.C. Martin, S. Young, Handbook of basic atomic spectroscopic data (National Institute of Standards and Technology, Gaithersburg, 2005)

    Google Scholar 

  28. K. Venkateswarlu, “Relative intensities of stokes and anti-stokes Raman lines in crystals,” In Proceedings of the Indian Academy of Sciences, Section A (Indian Academy of Sciences 1940), pp. 64–67

  29. N. Buzgar, A. Buzatu, I.V. Sanislav, The Raman study on certain sulfates. An. Stiint. U. Al. I-Mat 55, 5–23 (2009)

    Google Scholar 

  30. B. Berenblut, P. Dawson, G. Wilkinson, The Raman spectrum of gypsum. Spectrochim. Acta, Part A 27, 1849–1863 (1971)

    Article  ADS  Google Scholar 

  31. N. Krishnamurthy, V. Soots, Raman spectrum of gypsum. Can. J. Phys. 49, 885–896 (1971)

    Article  ADS  Google Scholar 

  32. M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, G. Wilsch, Laser-induced breakdown spectroscopy for on-line sulfur analyses of minerals in ambient conditions. Spectrochim. Acta, Part B 64, 1098–1104 (2009)

    Article  ADS  Google Scholar 

  33. A.P. Michel, M. Lawrence-Snyder, S.M. Angel, A.D. Chave, Laser-induced breakdown spectroscopy of bulk aqueous solutions at oceanic pressures: evaluation of key measurement parameters. Appl. Opt. 46, 2507–2515 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Matroodi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matroodi, F., Tavassoli, S.H. Simultaneous Raman and laser-induced breakdown spectroscopy by a single setup. Appl. Phys. B 117, 1081–1089 (2014). https://doi.org/10.1007/s00340-014-5929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5929-4

Keywords

Navigation