Skip to main content
Log in

Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Recent promising methods of nanoparticle fabrication include laser ablation and spark discharge. Despite different experimental conditions, a striking similarity is often observed in the sizes of the obtained particles. To explain this result, we elucidate physical mechanisms involved in the formation of metallic nanoparticles. In particular, we compare supersaturation degree and sizes of critical nucleus obtained under laser ablation conditions with that obtained for spark discharge in air. For this, the dynamics of the expansion of either ablated or eroded products is described by using a three-dimensional blast wave model. Firstly, we consider nanosecond laser ablation in air. In the presence of a background gas, the plume expansion is limited by the gas pressure. Nanoparticles are mostly formed by nucleation and condensation taking place in the supersaturated vapor. Secondly, we investigate nanoparticles formation by spark discharge at atmospheric pressure. After efficient photoionization and streamer expansion, the cathode material suffers erosion and NPs appear. The calculation results allow us to examine the sizes of critical nuclei as function of the experimental parameters and to reveal the conditions favorable for the size reduction and for the increase in the nanoparticle yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. G. Schmid, Nanoparticles: from theory to applications (Wiley-VCH, New York, 2004)

    Google Scholar 

  2. I. Movtchan, R.W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, Thin Solid Films 255, 286 (1995)

    Article  ADS  Google Scholar 

  3. Y. Yamada, T. Orii, I. Umezu, S. Takeyama, Y. Yoshida, Jpn. J. Appl. Phys. Part 1(35), 1361 (1996)

    Article  ADS  Google Scholar 

  4. T. Makimura, Y. Kunii, K. Murakami, Jpn. J. Appl. Phys. Part 1(35), 4780 (1996)

    Article  ADS  Google Scholar 

  5. T. Makimura, T. Mizuta, K. Murakami, Appl. Phys. Lett. 76, 1401 (2000)

    Article  ADS  Google Scholar 

  6. D.B. Geohegan, A.A. Puretzky, G. Dusher, S.J. Pennycook, Appl. Phys. Lett. 72, 2987 (1998)

    Article  ADS  Google Scholar 

  7. L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W. Marine, S. Giorgio, J. Appl. Phys. 87, 3829 (2000)

    Article  ADS  Google Scholar 

  8. W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis, Appl. Surf. Sci. 154–155, 345 (2000)

    Article  Google Scholar 

  9. I. Ozerov, D. Nelson, A. Bulgakov, W. Marine, M. Sentis, Appl. Surf. Sci. 212–213, 349 (2003)

    Article  Google Scholar 

  10. O. Albert, S. Roger, Y. Glinec, J.C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perriere, E. Millon, Appl. Phys. A Mater. Sci. Process. 76, 319 (2003)

    Article  ADS  Google Scholar 

  11. A. Pereira, P. Delaporte, M. Sentis, W. Marine, A.L. Thomann, C. Boulmer-Leborgne, J. Appl. Phys. 98, 064902 (2005)

    Article  ADS  Google Scholar 

  12. S. Amoruso, G. Ausanio, A.C. Barone, R. Bruzzese, C. Campana, X. Wang, Appl. Surf. Sci. 254, 1012–1016 (2007)

    Article  ADS  Google Scholar 

  13. M. Ullmann, S.K. Freidlander, A. Schmidt-Ott, J. Nanopart. Res. 4, 499–509 (2002)

    Article  Google Scholar 

  14. A.G. Gnedovets, A.V. Gusarov, I. Smurov, J. Appl. Phys. D: Appl. Phys. 32, 2162–2168 (1999)

    Article  ADS  Google Scholar 

  15. N.M. Bulgakova, A.V. Bulgakov, Proc. SPIE 6732, 67320G (2007)

    Article  ADS  Google Scholar 

  16. T.E. Itina, J. Hermann, Ph. Delaporte, M. Sentis, Phys. Rev. E 66, 066406 (2002)

    Article  ADS  Google Scholar 

  17. T.E. Itina, K. Gouriet, L.V. Zhigilei, S. Noël, J. Hermann, M. Sentis, Appl. Surf. Sci. 253, 7656–7661 (2007)

    Article  ADS  Google Scholar 

  18. N.S. Tabrizi, M. Ullmann, V.A. Vons, U. Lafont, A. Schmidt-Ott, J. Nanopart. Res. 11, 315–332 (2009)

    Article  Google Scholar 

  19. N.S. Tabrizi, Q. Xu, N.M. van der Pers, A. Schmidt-Ott, J. Nanopart. Res. 12, 247–259 (2010)

    Article  Google Scholar 

  20. L.V. Zhigilei, B.J. Garrison, J. Appl. Phys. 88(3), 1281 (2000)

    Article  ADS  Google Scholar 

  21. T.E. Itina, Chem. Phys. Lett. 452, 129–132 (2008)

    Article  ADS  Google Scholar 

  22. M.E. Povarnitsyn, T.E. Itina, K.V. Khishenko, P.R. Levashov, Appl. Surf. Sci. 253(15), 6343–6346 (2007)

    Article  ADS  Google Scholar 

  23. T.E. Itina, J. Hermann, Ph. Delaporte, M. Sentis, Thin Solid Films 453–454, 513–517 (2004)

    Article  Google Scholar 

  24. B.J. Garrison, T.E. Itina, L.V. Zhigilei, Phys. Rev. E 68, 041501 (2003)

    Article  ADS  Google Scholar 

  25. F. Vidal, T.W. Johnston, S. Laville, O. Barthélemy, M. Chaker, B. Le Drogoff, J. Margot, M. Sabasi, Phys. Rev. Lett. 86, 2573 (2001)

    Article  ADS  Google Scholar 

  26. F. Vidal, T.W. Johnston, J.-C. Kieffer, F. Martin, Phys. Rev. B 70, 184125 (2004)

    Article  ADS  Google Scholar 

  27. S.I. Anisimov, Y.A. Imas, G.S. Romanov, Y.V. Hodyko, Effects of high-power radiation on metals. (NTIS, Springfield, VA, 1971)

  28. S. I. Anisimov, Zh. Eksp. Teor. Fiz. 54, 339 (1968) [Sov. Phys. JETP, 27, 182 (1968)]

  29. A.V. Bulgakov, N.M. Bulgakova, J. Phys. D Appl. Phys. 31, 693 (1998)

    Article  ADS  Google Scholar 

  30. Y.B. Zel’dovich, Y.P. Raizer, Physics of shock waves and high temperature hydrodynamic phenomena. (Academic Press, New York, 1966)

  31. B. Luk’yanchuk, W. Marine, S. Anisimov, Laser Phys. 8, 291 (1998)

    Google Scholar 

  32. B.S. Luk’yanchuk, W. Marine, S.I. Anisimov, G.A. Simakina, Proc. SPIE, 3618, 434–452 (1999)

    Google Scholar 

  33. A.V. Gusarov, A.V. Gnedovets, I. Smurov, J. Appl. Phys. 88, 4362 (2000)

    Article  ADS  Google Scholar 

  34. N. Arnold, J. Gruber, J. Heitz, Appl. Phys. A 69 [Suppl.], S87–S93 (1999)

  35. G.I. Taylor, Proc. R. Soc. Lond. A 201, 159 (1950)

    Article  ADS  MATH  Google Scholar 

  36. L.I. Sedov, Similarity and dimensional methods in mechanics (Infosearch LTD, London, 1959)

    MATH  Google Scholar 

  37. L.D. Landau, E.M. Lifshitz, Fluid mechanics (Pergamon Press, New York, 1987)

    MATH  Google Scholar 

  38. K.P. Stanyukovich, Unsteady motion of continuous media (Pergamo, London, 1960)

    Google Scholar 

  39. M.R. Predtechensky, A.P. Mayorov, Appl. Supercond. 1, 2011 (1993)

    Article  Google Scholar 

  40. T.E. Itina, J. Hermann, Ph. Delaporte, M. Sentis, Appl. Surf. Sci. 208–209, 27–32 (2003)

    Article  Google Scholar 

  41. S.-B. Wen, X. Mao, R. Greif, R.E. Russo, J. Appl. Phys. 101, 023114 (2007)

    Article  ADS  Google Scholar 

  42. S. Amoruso, J. Schou, J.G. Lunney, Appl. Phys. A 92, 907 (2008)

    Article  ADS  Google Scholar 

  43. A. Sambri, S. Amoruso, X. Wang, M. Radovic’, F. Miletto Granozio, R. Bruzzese, Appl. Phys. Lett. 91, 151501 (2007)

    Article  ADS  Google Scholar 

  44. D.B. Geohegan, Thin Solid Films 220, 138 (1992)

    Article  ADS  Google Scholar 

  45. A.A. Kulikovsky, J. Phys. D Appl. Phys. 30, 1515–1522 (1997)

    Article  ADS  Google Scholar 

  46. N.Y. Babaeva, G.V. Naidis, J. Phys. D Appl. Phys. 29, 2423–2431 (1996)

    Article  ADS  Google Scholar 

  47. F. Soldera, A. Lasagni, F. Mücklich, T. Kaiser, K. Hrastnik, Comp. Mat. Sci. 32, 123–139 (2005)

    Article  Google Scholar 

  48. G. Clair, D. L’Hermite, J. Appl. Phys. 110, 083307 (2011)

    Article  ADS  Google Scholar 

  49. S. Aggoune, F. Vidal, E.H. Amara, Appl. Phys. A 101, 167–171 (2010)

    Article  ADS  Google Scholar 

  50. A. Gupta, B. Braren, K.G. Kasey, B.W. Hussey, R. Kelly, Appl. Phys. Lett. 59, 1302 (1991)

    Article  ADS  Google Scholar 

  51. D.B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992)

    Article  ADS  Google Scholar 

  52. G. Gallies, P. Berger, H. Hügel, J. Phys. D Appl. Phys. 28, 794–806 (1995)

    Article  ADS  Google Scholar 

  53. S.H. Jeong, R. Greif, R.E. Russo, J. Phys. D Appl. Phys. 32, 2578–2585 (1999)

    Article  ADS  Google Scholar 

  54. T.A. Schmitz, J. Koch, D. Günther, R. Zenobi, J. Appl. Phys. 109, 123106 (2011)

    Article  ADS  Google Scholar 

  55. M. Girault, L. Hallo, L. Lavisse, M.C. Marco de Lucas, D. Hébert, V. Potin, J.-M. Jouvard, Appl. Surf. Sci. 258, 9461–9465 (2012)

    Article  ADS  Google Scholar 

  56. E.D. Palik, Handbook of optical constants of solids I (Academic Press, New York, 1985)

Download references

Acknowledgments

We gratefully acknowledge financial support from the European Union’s Seventh Framework program under Grant agreement no 280765 (BOUNAPART-E). We are also thankful to the CINES of France for computer time provided under the project number C2012085015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Itina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itina, T.E., Voloshko, A. Nanoparticle formation by laser ablation in air and by spark discharges at atmospheric pressure. Appl. Phys. B 113, 473–478 (2013). https://doi.org/10.1007/s00340-013-5490-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-013-5490-6

Keywords

Navigation