Skip to main content

Nanoparticles by Laser Ablation of Bulk Target Materials in Liquids

  • Reference work entry
Handbook of Nanoparticles

Abstract

The debris which is generated following laser ablation of a bulk target material by an intense laser beam consists under certain conditions of nanoparticles. This technique has been established and developed especially in the last few years as an alternative method for the synthesis of nanoparticles with desired physicochemical and structural properties in the same way as other techniques such as colloidal chemistry, electrochemistry, spark current decomposition, and others are used for that purpose. In case the target material is immersed in liquid, a nanoparticle colloidal solution is formed. The main advantages of this method are that it does not require the use of chemical precursors for nanomaterial synthesis, it produces nanoparticle colloidal solutions which are stable without the need of adding into them any stabilizing surfactants and nanoparticles with bare (ligand-free) surfaces which are highly surface active, and it allows for an in situ functionalization of the synthesized nanoparticles with the desired ligands. In addition, the ablation plasma plume experiences an additional compression by the liquid which may result in the formation of nanoparticles which are characterized by metastable material phases, difficult or impossible to be produced by other methods. This chapter outlines the fundamental principles of the method and reviews the synthesis of nanoparticles out of different materials ranging from metals to semiconductors and ceramics, techniques for adjusting the sizes and size distribution of the nanoparticles such as particle fragmentation, the synthesis of alloy nanoparticles and magnetic nanoparticles, issues of productivity scaling up, and the synthesis of other nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.W. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog. Mater. Sci. 52, 648 (2007)

    Article  Google Scholar 

  2. P. Lorazo, L.J. Lewis, M. Meunier, Short-pulse laser ablation of solids: from phase explosion to fragmentation. Phys. Rev. Lett. 91, 225502 (2003)

    Article  Google Scholar 

  3. T. Tsuji, D.-H. Thang, Y. Okazaki, M. Nakanishi, Y. Tsuboi, M. Tsuji, Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci. 254, 5224 (2008)

    Article  Google Scholar 

  4. T. Tsuji, Y. Okazaki, Y. Tsuboi, M. Tsuji, Nanosecond time-resolved observations of laser ablation of silver in water. Jpn. J. Appl. Phys. 46, 1533 (2007)

    Article  Google Scholar 

  5. A. De Giacomo, M. Dell’Aglio, A. Santagata, R. Gaudiuso, O. De Pascale, P. Wagener, G.C. Messina, G. Compagnini, S. Barcikowski, Cavitation dynamics of laser ablation of bulk and wire-shaped metals in water during nanoparticles production. Phys. Chem. Chem. Phys. 15, 3083 (2013)

    Article  Google Scholar 

  6. P. Liu, W. Cai, H. Zeng, Fabrication and size-dependent optical properties of FeO nanoparticles induced by laser ablation in a liquid medium. J. Phys. Chem. C 112, 3261 (2008)

    Article  Google Scholar 

  7. N.G. Semaltianos et al., Laser ablation of a bulk titanium target in water: a route to synthesize nanoparticles of titanium monoxide. Chem. Phys. Lett. 496, 113 (2010)

    Article  Google Scholar 

  8. D. Amans, A.-C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Rela. Mater. 18, 177 (2009)

    Article  Google Scholar 

  9. J.-P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J. Phys. Chem. B 108, 16864 (2004)

    Article  Google Scholar 

  10. H. Muto, K. Yamada, K. Miyajima, F. Mafuné, Estimation of surface oxide on surfactant-free gold nanoparticles laser-ablated in water. J. Phys. Chem. C 111, 17221 (2007)

    Article  Google Scholar 

  11. S.A. Al-Mamun, R. Nakajima, T. Ishigaki, Tuning the size of aluminium oxide nanoparticles synthesized by laser ablation in water using physical and chemical approaches. J. Coll. Interf. Sci. 392, 172 (2013)

    Article  Google Scholar 

  12. C. Rehbock, V. Merk, L. Gamrad, R. Streubel, S. Barcikowski, Size control of laser-fabricated surfactant-free gold nanoparticles with highly diluted electrolytes and their subsequent bioconjugation. Phys. Chem. Chem. Phys. 15, 3057 (2013)

    Article  Google Scholar 

  13. O.M. Magnussen, B.M. Ocko, J.X. Wang, R.R. Adzic, In-situ X-ray diffraction and STM studies of bromide adsorption on Au(111) electrodes. J. Phys. Chem. 100, 5500 (1996)

    Article  Google Scholar 

  14. F. Mafuné, J.Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe, Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105, 5114 (2001)

    Article  Google Scholar 

  15. S. Besner, A.V. Kabashin, F.M. Winnik, M. Meunier, Synthesis of size-tunable polymer-protected gold nanoparticles by femtosecond laser-based ablation and seed growth. J. Phys. Chem. C 113, 9526 (2009)

    Article  Google Scholar 

  16. M. Muniz-Miranda, C. Gellini, E. Giorgetti, Surface-enhanced Raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 115, 5021 (2011)

    Article  Google Scholar 

  17. R. Zamiri, B.Z. Azmi, H.A. Ahangar, G. Zamiri, M.S. Husin, Z.A. Wahab, Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull. Mater. Sci. 35, 727 (2012)

    Article  Google Scholar 

  18. K. Šišková, J. Pfleger, M. Procházka, Stabilization of Au nanoparticles prepared by laser ablation in chloroform with free-base porphyrin molecules. Appl. Surf. Sci. 256, 2979 (2010)

    Article  Google Scholar 

  19. P. Wagener, A. Schwenke, S. Barcikowski, How citrate ligands affect nanoparticle adsorption to microparticle supports. Langmuir 28, 6132 (2012)

    Article  Google Scholar 

  20. S. Petersen, S. Barcikowski, In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv. Funct. Mater. 19, 1167 (2009)

    Article  Google Scholar 

  21. S. Petersen, S. Barcikowski, Conjugation efficiency of laser-based bioconjugation of gold nanoparticles with nucleic acids. J. Phys. Chem. C 113, 19830 (2009)

    Article  Google Scholar 

  22. V. Amendola, P. Riello, M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J. Phys. Chem. C 115, 5140 (2011)

    Article  Google Scholar 

  23. H. Zhang, C. Liang, J. Liu, Z. Tian, G. Shao, The formation of onion-like-encapsulated cobalt carbide core/shell nanoparticles by the laser ablation of metallic cobalt in acetone. Carbon 55, 108 (2013)

    Article  Google Scholar 

  24. L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution. J. Nanopart. Res. 9, 1181 (2007)

    Article  Google Scholar 

  25. G. Compagnini, M.G. Sinatra, G.C. Messina, G. Patanè, S. Scalese, O. Puglisi, Monitoring the formation of inorganic fullerene-like MoS2 nanostructures by laser ablation in liquid environments. Appl. Surf. Sci. 258, 5672 (2012)

    Article  Google Scholar 

  26. T. Salminen, M. Honkanen, T. Niemi, Coating of gold nanoparticles made by pulsed laser ablation in liquids with silica shells by simultaneous chemical synthesis. Phys. Chem. Chem. Phys. 15, 3047 (2013)

    Article  Google Scholar 

  27. S. Hashimoto, D. Werner, T. Uwada, Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C Photochem. Rev. 13, 28 (2012)

    Article  Google Scholar 

  28. D. Werner, A. Furube, T. Okamato, S. Hashimoto, Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-probe spectroscopy investigations revealing coulomb explosion. J. Phys. Chem. C 115, 8503 (2011)

    Article  Google Scholar 

  29. S. Besner, A.V. Kabashin, M. Meunier, Fragmentation of colloidal nanoparticles by femtosecond laser-induced supercontinuum generation. Appl. Phys. Lett. 89, 233122 (2006)

    Article  Google Scholar 

  30. R. Mahfouz, F.J.C.S. Aires, A. Brenier, E. Ehret, M. Roumié, B. Nsouli, B. Jacquier, J.C. Bertolini, Elaboration and characterization of bimetallic nanoparticles obtained by laser ablation of Ni75Pd25 and Au75Ag25 targets in water. J. Nanopart. Res. 12, 3123 (2010)

    Article  Google Scholar 

  31. J. Jakobi, A. Menéndez-Manjon, V.S.K. Chakravadhanula, L. Kienle, P. Wagener, S. Barcikowski, Stoichiometry of alloy nanoparticles from laser ablation of PtIr in acetone and their electrophoretic deposition on PtIr electrodes. Nanotechnology 22, 145601 (2011)

    Article  Google Scholar 

  32. J. Jakobi, S. Petersen, A. Menéndez-Manjon, P. Wagener, S. Barcikowski, Magnetic alloy nanoparticles from laser ablation in cyclopentanone and their embedding into a photoresist. Langmuir 26, 6892–6897 (2010)

    Article  Google Scholar 

  33. J. Zhang, D. Nii Oko, S. Garbarino, R. Imbeault, M. Chaker, A.C. Tavares, D. Guay, D. Ma, Preparation of PtAu alloy colloids by laser ablation in solution and their characterization. J. Phys. Chem. C 116, 13413 (2012)

    Article  Google Scholar 

  34. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686 (2003)

    Article  Google Scholar 

  35. S. Besner, M. Meunier, Femtosecond laser synthesis of AuAg nanoalloys: photoinduced oxidation and ions release. J. Phys. Chem. C 114, 10403 (2010)

    Article  Google Scholar 

  36. G. Compagnini, E. Messina, O. Puglisi, R.S. Cataliotti, V. Nicolosi, Spectroscopic evidence of a core-shell structure in the earlier formation stages of Au–Ag nanoparticles by pulsed laser ablation in water. Chem. Phys. Lett. 457, 386 (2008)

    Article  Google Scholar 

  37. S. Barcikowski, A. Menéndez-Manjón, B. Chichkov, M. Brikas, G. Račiukaitis, Generation of nanoparticle colloids by picosecond and femtosecond laser ablations in liquid flow. Appl. Phys. Lett. 91, 083113 (2007)

    Article  Google Scholar 

  38. Y. Jiang, P. Liu, Y. Liang, H.B. Li, G.W. Yang, Promoting the yield of nanoparticles from laser ablation in liquid. Appl. Phys. A 105, 903 (2011)

    Article  Google Scholar 

  39. C.L. Sajti, R. Sattari, B.N. Chichkov, S. Barcikowski, Gram scale synthesis of pure ceramic nanoparticles by laser ablation in liquid. J. Phys. Chem. B 114, 2421 (2010)

    Google Scholar 

  40. G.C. Messina, P. Wagener, R. Streubel, A. De Giacomo, A. Santagata, G. Compagnini, S. Barcikowski, Pulsed laser ablation of a continuously-fed wire in liquid flow for high-yield production of silver nanoparticles. Phys. Chem. Chem. Phys. 15, 3093 (2013)

    Article  Google Scholar 

  41. V. Amendola, S. Polizzi, M. Meneghetti, Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir 23, 6766 (2007)

    Article  Google Scholar 

  42. N.G. Semaltianos et al., Polymer-nanoparticle composites composed of PEDOT:PSS and nanoparticles of Ag synthesized by laser ablation. Coll. Polym. Sci. 290, 213 (2012)

    Article  Google Scholar 

  43. N.G. Semaltianos et al., Palladium or palladium hydride nanoparticles synthesized by laser ablation of a bulk palladium target in liquids. J. Coll. Interf. Sci. 402, 307 (2013)

    Article  Google Scholar 

  44. W.T. Nichols, T. Sasaki, N. Koshozaki, Laser ablation of a platinum target in water. III. Laser-induced reactions. J. Appl. Phys. 100, 114913 (2006)

    Google Scholar 

  45. H. Zheng, W. Cai, Y. Li, J. Hu, P. Liu, Composition/structural evolution and optical properties of ZnO/Zn nanoparticles by laser ablation in liquid media. J. Phys. Chem. B 109, 18260 (2005)

    Article  Google Scholar 

  46. P.G. Kuzmin, G.A. Shafeev, G. Viau, B. Warot-Fonrose, M. Barberoglou, E. Stratakis, C. Fotakis, Porous nanoparticles of Al and Ti generated by laser ablation in liquids. Appl. Surf. Sci. 258, 9283 (2012)

    Article  Google Scholar 

  47. G. Viau, V. Collière, L.-M. Lacroix, G.A. Shafeev, Internal structure of Al hollow nanoparticles generated by laser ablation in liquid ethanol. Chem. Phys. Lett. 501, 419 (2011)

    Article  Google Scholar 

  48. C. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, Synthesis of ultrafine SnO2-x nanocrystals by pulsed laser-induced reactive quenching in liquid medium. J. Phys. Chem. B 107, 9220 (2003)

    Article  Google Scholar 

  49. J. Xiao, Q.L. Wu, P. Liu, Y. Liang, H.B. Li, M.M. Wu, G.W. Yang, Highly stable sub-5 nm Sn6O4(OH)4 nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange. Nanotechnology 25, 135702 (2014)

    Article  Google Scholar 

  50. H. Zhang, G. Duan, Y. Li, X. Xu, Z. Dai, W. Cai, Leaf-like tungsten oxide nanoplatelets induced by laser ablation in liquid and subsequent aging. Cryst. Growth Des. 12, 2646 (2012)

    Article  Google Scholar 

  51. Q. Li, C. Liang, Z. Tian, J. Zhang, H. Zhang, W. Cai, Core-shell TaxO@Ta2O5 structured nanoparticles: laser ablation synthesis in liquid, structure and photocatalytic property. CrystEngComm 14, 3236 (2012)

    Article  Google Scholar 

  52. D. Tan, G. Lin, Y. Liu, Y. Teng, Y. Zhuang, B. Zhu, Q. Zhao, J. Qiu, Synthesis of nanocrystalline cubic zirconia using femtosecond laser ablation. J. Nanopart. Res. 13, 1183 (2011)

    Article  Google Scholar 

  53. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, H. Li, X.W. Du, Morphology control of nanostructures via surface reaction of metal nanodroplets. J. Am. Chem. Soc. 132, 9814 (2010)

    Article  Google Scholar 

  54. C.H. Lin, S.Y. Chen, P. Shen, Defects, lattice correspondence, and optical properties of spinel-like Cr3O4 condensates by pulsed laser ablation in water. J. Phys. Chem. C 113, 16356 (2009)

    Article  Google Scholar 

  55. N.G. Semaltianos et al., Laser ablation of a bulk Cr target in liquids for nanoparticles synthesis. RSC Adv. 4, 50406 (2014)

    Article  Google Scholar 

  56. H. Zhang, C. Liang, Z. Tian, G. Wang, W. Cai, Single phase Mn3O4 nanoparticles obtained by pulsed laser ablation in liquid and their application in rapid removal of trace pentachlorophenol. J. Phys. Chem. C 114, 12524 (2010)

    Article  Google Scholar 

  57. T.X. Phuoc, B.H. Howard, D.V. Martello, Y. Soong, M.K. Chyu, Synthesis of Mg(OH)2, MgO and Mg nanoparticles using laser ablation of magnesium in water and solvents. Opt. Lase Eng. 46, 829 (2008)

    Article  Google Scholar 

  58. Z. Yan, R. Bao, Y. Huang, A.N. Caruso, S.B. Qadri, C.Z. Dinu, D.B. Chrisey, Excimer laser production, assembly, sintering and fragmentation of novel fullerene-like permalloy particles in liquid. J. Phys. Chem. C 114, 3869 (2010)

    Article  Google Scholar 

  59. Y. Ishikawa, K. Kawaguchi, Y. Shimizu, T. Sasaki, N. Koshizaki, Preparation of Fe-Pt alloy particles by pulsed laser ablation in liquid medium. Chem. Phys. Lett. 428, 426 (2006)

    Article  Google Scholar 

  60. V. Amendola, M. Meneghetti, O.M. Bakr, P. Riello, S. Polizzi, D.H. Anjum, S. Fiameni, P. Arosio, T. Orlando, C. de J. Fernandez, F. Pineider, C. Sangregorio, A. Lascialfari, Coexistence of plasmonic and magnetic properties in Au89Fe11 nanoalloys. Nanoscale 5, 5611 (2013)

    Google Scholar 

  61. R. Intartaglia, K. Bagga, M. Scotto, A. Diaspro, F. Brandi, Luminescent silicon nanoparticles prepared by ultra short pulsed laser ablation in liquid for imaging applications. Opt. Mater. Express 2, 510 (2012)

    Article  Google Scholar 

  62. T. Salminen, J. Dahl, M. Tuominen, P. Laukkanen, E. Arola, T. Niemi, Single-step fabrication of luminescent GaAs nanocrystals by pulsed laser ablation in liquids. Opt. Mater. Express 2, 799 (2012)

    Article  Google Scholar 

  63. G. Ledoux, D. Amans, C. Dujardin, K. Masenelli-Varlot, Facile and rapid synthesis of highly luminescent nanoparticles via pulsed laser ablation in liquid. Nanotechnology 20, 445605 (2009)

    Article  Google Scholar 

  64. D. Amans, C. Malaterre, M. Diouf, C. Mancini, F. Chaput, G. Ledoux, G. Breton, Y. Guillin, C. Dujardin, K. Masenelli-Varlot, P. Perriat, Synthesis of oxide nanoparticles by pulsed laser ablation in liquids containing a complexing molecule: impact on size distributions and prepared phases. J. Phys. Chem. C 115, 5131 (2011)

    Article  Google Scholar 

  65. S.W. Mhin, J.H. Ryu, K.M. Kim, G.S. Park, H.W. Ryu, K.B. Shim, T. Sasaki, N. Koshizaki, Pulsed-laser-induced simple synthetic route for Tb3Al5O12:Ce3+ colloidal nanocrystals and their luminescent properties. Nanosci. Res. Lett. 4, 888 (2009)

    Article  Google Scholar 

  66. X.Z. Lin, P. Liu, J.M. Yu, G.W. Wang, Synthesis of CuO nanocrystals and sequential assembly of nanostructures with shape-dependent optical absorption upon laser ablation in liquid. J. Phys. Chem. C 113, 17543 (2009)

    Article  Google Scholar 

  67. P. Liu, C.X. Wang, X.Y. Chen, G.W. Yang, Controllable fabrication and cathodoluminescence performance of high-index facets GeO2 micro- and nanocubes and spindles upon electrical-field assisted laser ablation in liquid. J. Phys. Chem. C 112, 13450 (2008)

    Article  Google Scholar 

  68. A.S. Barnard, M. Sternberg, Crystallinity and surface electrostatics of diamond nanocrystals. J. Mater. Chem. 17, 4811 (2007)

    Article  Google Scholar 

  69. Y. Liang, P. Liu, H.B. Li, G.W. Yang, Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm 14, 3291 (2012)

    Article  Google Scholar 

  70. P. Liu, Y.L. Cao, C.X. Wang, X.Y. Chen, G.W. Yang, Micro- and nanocubes of carbon with C8-like and blue luminescence. Nano Lett. 8, 2570 (2008)

    Article  Google Scholar 

  71. Z. Yan, R. Bao, D.B. Chrisey, Generation of Ag2O micro-/nanostructures by pulsed excimer laser ablation of Ag in aqueous solutions of polysorbate 80. Langmuir 27, 851 (2011)

    Article  Google Scholar 

  72. Z. Yan, R. Bao, C.M. Busta, D.B. Chrisey, Fabrication and formation mechanism of hollow MgO particles by pulsed excimer laser ablation of Mg in liquid. Nanotechnology 22, 265610 (2011) and references there in

    Article  Google Scholar 

  73. Z. Yan, R. Bao, D.B. Chrisey, Self-assembly of zinc hydroxide/dodecyl sulfate nanolayers into complex three-dimensional nanostructures by laser ablation in liquid. Chem. Phys. Lett. 497, 205 (2010)

    Article  Google Scholar 

  74. P. Moroshkin, V. Lebedev, B. Grobety, C. Neururer, E.B. Gordon, A. Weis, Nanowire formation by gold nano-fragment coalescence on quantized vortices in He II. Europhys. Lett. 90, 34002 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Semaltianos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Semaltianos, N.G. (2016). Nanoparticles by Laser Ablation of Bulk Target Materials in Liquids. In: Aliofkhazraei, M. (eds) Handbook of Nanoparticles. Springer, Cham. https://doi.org/10.1007/978-3-319-15338-4_1

Download citation

Publish with us

Policies and ethics