Skip to main content
Log in

Setup and performance of a streak camera apparatus for transient absorption measurements in the ns to ms range

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We describe the setup and performance of an apparatus for simultaneous time- and spectrally resolved measurements of transient absorption. The key component in this apparatus is a streak camera, yielding, for every excitation of the sample, a two-dimensional data array with 512 × 512 data points. The apparatus covers the spectral range 350–750 nm and time windows ranging from 500 ns up to 10 ms. Due to the large dynamic range of the streak camera of 10,000:1 we obtain a multiplex factor of more than 100 compared with sequential measurements at individual wavelengths. This makes it possible to extract the maximum amount of information from small amounts of sample, e.g. light-sensitive proteins. We show that already a single pump probe pulse sequence can yield useful spectra in a 20-μs time range, and that 10 pump-probe pulse sequences yield good time constants from a global lifetime analysis. An iterative method is presented for the treatment of artifacts due to scattered excitation laser light or strong fluorescence. As an alternative to a global lifetime analysis we propose a maximum entropy-based inverse Laplace transform for analysis of the data. This results in a wavelength-dependent distribution of amplitudes p(k, λ) for all rate constants k accessible with a given time window. This analysis is model free and yields a direct visual evaluation of the uncertainties in the rate constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.G.W. Norrish, G. Porter, Nature 164, 658 (1949)

    Article  ADS  Google Scholar 

  2. G. Porter, Science 160, 1299 (1968)

    Article  ADS  Google Scholar 

  3. N.P. Schepp, F.L. Cozens, Lasers Chem, vol. 2. (Wiley, Weinheim, 2008) pp. 1073–1091

  4. J. Wirz, Adv. Phys. Org. Chem. 44, 325–356 (2010)

    Article  Google Scholar 

  5. G. Ferraudi, Phys. Inorg. Chem.: Princ., Methods, Models. (Wiley, Newyork, 2010) pp. 199–267

  6. A. Müller, J. Schulz-Hennig, H. Tashiro, Opt. Commun. 18, 152 (1976)

    Article  ADS  Google Scholar 

  7. K. Yoshihara, A. Namiki, M. Sumitani, N. Nakashima, J. Chem. Phys. 71, 2892 (1979)

    Article  ADS  Google Scholar 

  8. Y. Liang, D. Negus, R. Hochstrasser, M. Gunner, P. Dutton, Chem. Phys. Lett. 84, 236 (1981)

    Google Scholar 

  9. D.-J. Jang, D.F. Kelley, Rev. Sci. Instrum. 56, 2205 (1985)

    Article  ADS  Google Scholar 

  10. M.C. Sauer Jr., C. Romero, K.H. Schmidt, Int. J. Rad. Appl. Instrum. C 29, 261 (1987)

    Google Scholar 

  11. J.A. Schmidt, E.F. Hilinski, Rev. Sci. Instrum. 60, 2902 (1989)

    Article  ADS  Google Scholar 

  12. T. Ito, M. Hiramatsu, M. Hosoda, Y. Tsuchiya, Rev. Sci. Instrum. 62, 1415 (1991)

    Article  ADS  Google Scholar 

  13. T. Nagamura, H. Sakaguchi, S. Muta, T. Ito, Appl. Phys. Lett. 63, 2762 (1993)

    Article  ADS  Google Scholar 

  14. T. Nagamura, H. Sakaguchi, T. Ito, S. Muta, Mol. Cryst. Liq. Cryst. A 247, 39 (1994)

    Article  Google Scholar 

  15. T. Hayashi, T. Takimura, H. Ogoshi, J. Am. Chem. Soc. 117, 11606 (1995)

    Article  Google Scholar 

  16. A. Watanabe, O. Ito, M. Watanabe, H. Saito, M. Koishi, J. Phys. Chem. 100 10518 (1996)

    Article  Google Scholar 

  17. T. Kodaira, A. Watanabe, O. Ito, M. Watanabe, H. Saito, M. Koishi, J. Phys. Chem. 100, 15309 (1996)

    Article  Google Scholar 

  18. G.A. Brucker, D.F. Kelley, J. Phys. Chem. 91, 2856 (1987)

    Article  Google Scholar 

  19. N.A. Abul-Haj, D.F. Kelley, J. Phys. Chem. 91, 5903 (1987)

    Article  Google Scholar 

  20. L.F. Cooley, C.E.L. Headford, C.M. Elliott, D.F.Kelley, J. Am. Chem. Soc. 110, 6673 (1988)

    Article  Google Scholar 

  21. D.-J. Jang, Bull. Korean Chem. Soc. 12, 441 (1991)

    Google Scholar 

  22. D.-J. Jang, P. Kim, Bull. Korean Chem. Soc. 16, 1184 (1995)

    Google Scholar 

  23. D.-J. Jang, C.S. Ah, Bull. Korean Chem. Soc. 19, 1063 (1998)

    Google Scholar 

  24. C.S. Ah, H.S. Han, K. Kim, D.-J. Jang, J. Phys. Chem. B 104, 8153 (2000)

    Article  Google Scholar 

  25. C.S. Ah, H.S. Han, K. Kim, D.-J. Jang, Pure Appl. Chem. 72, 91 (2000)

    Article  Google Scholar 

  26. J.H. Chung, C.S. Ah, D.-J. Jang, J. Phys. Chem. B 105, 4128 (2001)

    Article  Google Scholar 

  27. H. Kim, T.G. Kim, J. Hahn, D.-J. Jang, D.J. Chang, B.S. Park, J. Phys. Chem. A 105, 3555 (2001)

    Article  Google Scholar 

  28. S.J. Kim, T.G. Kim, C.S. Ah, K. Kim, D.-J. Jang, J. Phys. Chem. B 108, 880 (2004)

    Article  Google Scholar 

  29. T. Langenbacher, D. Immeln, B. Dick, T. Kottke, J. Am. Chem. Soc. 131, 14274 (2009)

    Article  Google Scholar 

  30. U. Megerle, M. Wenninger, R.-J. Kutta, R. Lechner, B. König, B. Dick, E. Riedle, Phys. Chem. Chem. Phys. 13, 8869 (2011)

    Article  Google Scholar 

  31. T. Kottke, J. Heberle, D. Hehn, B. Dick, P. Hegemann, Biophys. J. 84, 1192 (2003)

    Article  ADS  Google Scholar 

  32. T. Kottke, B. Dick, R. Fedorov, I. Schlichting, R. Deutzmann, P. Hegemann, Biochemistry 42, 9854 (2003)

    Article  Google Scholar 

  33. H.M. Guo, T. Kottke, P. Hegemann, B. Dick, Biophys. J. 89, 402 (2005)

    Article  Google Scholar 

  34. C.G. Hatchard, C.A. Parker, Proc. Roy. Soc. (London) A 235, 518 (1956)

    Article  ADS  Google Scholar 

  35. R. Bonneau, J. Wirz, A.D. Zuberbühler, Pure Appl. Chem. 69, 979 (1997)

    Article  Google Scholar 

  36. N.P. Ernsting, S.A. Kovalenko, T. Senyushkina, J. Saam, V. Farztdinov, J. Phys. Chem. A 105, 3443 (2001)

    Article  Google Scholar 

  37. I.H.M. van Stokkum, D.S. Larsen, R. van Grondelle, Biochim. Biophys. Acta Bioenerg. 1657, 82 (2004)

    Article  Google Scholar 

  38. C. Ruckebusch, M. Sliwa, P. Pernot, A. de Juan, R. Tauler, J. Photochem. Photobiol. C 13, 1 (2012)

    Article  Google Scholar 

  39. G.J. Daniell, in Maximum Entropy in Action, ed. by B. Buck, V.A. Macaulay (Oxford University Press, Oxford, 1992) pp. 1–18

  40. J. Skilling, in Maximum Entropy in Action, ed. by B. Buck, V.A. Macaulay (Oxford University Press, Oxford, 1992) pp. 19–40

  41. E.T. Jaynes, Proc. IEEE 70, 939 (1982)

    Article  ADS  Google Scholar 

  42. A.K. Livesey, P. Licinio, M. Delaye, J. Chem. Phys. 84, 5102 (1986)

    Article  ADS  Google Scholar 

  43. V.A. Lorenz-Fonfria, H. Kandori, Appl. Spectrosc. 61, 74 (2007)

    Article  ADS  Google Scholar 

  44. A.T.N. Kumar, L. Zhu, J.F. Christian, A.A. Demidov, P.M. Champion, J. Phys. Chem. B 105, 7847 (2001)

    Article  Google Scholar 

  45. Z. Ablonczy, A. Lukacs, E. Papp, Biophys. Chem. 104, 249 (2003)

    Article  Google Scholar 

  46. S.P. Tsunoda, D. Ewers, S. Gazzarrini, A. Moroni, D. Gradmann, P. Hegemann, Biophys. J. 91, 1471 (2006)

    Article  ADS  Google Scholar 

  47. E.C. Carroll, M.P. Hill, D. Madsen, K.R. Malley, D.S. Larsen, Rev. Sci. Instrum. 80, 026102 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This streak camera was obtained by a Grant (Di-299/6) from the Deutsche Forschungsgemeinschaft (DFG) within the Forschergruppe FOR526 “Blue Light Photoreceptors”. The application to flavin photocatalysis was supported by the research training group GRK1626 “Chemical Photocatalysis”. RJK acknowledges a stipend by the DFG from the research training group GRK640 “Sensory Photoreceptors in Natural and Artificial Systems”. The samples of acerhodopsin were kind gifts of J. Tittor (MPI Martinsried) and P. Hegemann (Humboldt University Berlin). The toroidal mirrors were a kind gift of Rodenstock company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutta, RJ., Langenbacher, T., Kensy, U. et al. Setup and performance of a streak camera apparatus for transient absorption measurements in the ns to ms range. Appl. Phys. B 111, 203–216 (2013). https://doi.org/10.1007/s00340-012-5320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5320-2

Keywords

Navigation