Skip to main content
Log in

An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The silicon-based three-dimensional hybrid long-range plasmonic waveguide not only supports long-range propagation distance (~mm) but also has an ultra-small modal area (~10−2 μm2) at 1.55 μm. Here, we propose a directional coupler for effective coupling from a dielectric slab-waveguide to the hybrid plasmonic waveguide on a silicon platform. Our simulation results show that the coupler is able to excite hybrid long-range plasmonic mode with short coupling length, low insertion loss, and high extinction ratio. With the arm separation of 0.3 μm, the coupling length can be made 5.2 % of the propagation length of the hybrid plasmonic waveguide, while the insertion loss and extinction ratio are −0.12 and 22.4 dB, respectively. This coupler offers the potential applications in signal routing between the hybrid long-range plasmonic waveguide and dielectric waveguide in the photonic integrated circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003)

    Article  ADS  Google Scholar 

  2. E. Ozbay, Science 311, 189–193 (2006)

    Article  ADS  Google Scholar 

  3. D. Sarid, Phys. Rev. Lett. 47, 1927 (1981)

    Article  ADS  Google Scholar 

  4. P. Berini, Phys. Rev. B 61, 10484 (2000)

    Article  ADS  Google Scholar 

  5. A. Degiron, D. Smith, Opt. Exp. 14, 1611 (2006)

    Article  ADS  Google Scholar 

  6. P. Berini, Adv. Opt. Photon. 1, 484 (2009)

    Article  Google Scholar 

  7. J. Guo, R. Adato, Opt. Exp. 14, 12409 (2006)

    Article  ADS  Google Scholar 

  8. V.S. Volkov, Z. Han, M.G. Nielsen, K. Leosson, H. Keshmiri, J. Gosciniak, O. Albrektsen, S.I. Bozhevolnyi, Opt. Lett. 36, 4278 (2011)

    Article  ADS  Google Scholar 

  9. Y. Bian, Z. Zheng, X. Zhao, J. Zhu, T. Zhou, Opt. Exp. 17, 21320 (2009)

    Article  Google Scholar 

  10. B. Yun, G. Hu, Y. Ji, Y. Cui, J. Opt. Soc. Am. B 26, 1924 (2009)

    Article  Google Scholar 

  11. L. Chen, X. Li, G. Wang, W. Li, S. Chen, L. Xiao, D. Gao, IEEE J. Lightwave Technol. 30, 163 (2012)

    Article  ADS  Google Scholar 

  12. L. Chen, T. Zhang, X. Li, W.P. Huang, Opt. Exp. 20, 20535 (2012)

    Article  ADS  Google Scholar 

  13. R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, Nat. Photonics 2, 496 (2008)

    Article  Google Scholar 

  14. M. Fujii, J. Leuthold, W. Freude, IEEE Photon. Technol. Lett. 21, 362 (2009)

    Article  ADS  Google Scholar 

  15. D. Dai, S. He, Opt. Exp. 17, 16646 (2009)

    Article  ADS  Google Scholar 

  16. M.Z. Alam, J. Meier, J.S. Aitchison, M. Mojahedi, Opt. Exp. 18, 12971 (2010)

    Article  ADS  Google Scholar 

  17. V.J. Sorger, Z. Ye, R.F. Oulton, Y. Wang, G. Bartal, X. Yin, X. Zhang, Nat. Commun. 2, 331 (2011)

    Article  Google Scholar 

  18. D.F.P. Pile, D.K. Gramotnev, Opt. Lett. 29, 1069 (2004)

    Article  ADS  Google Scholar 

  19. E. Moreno, S.G. Rodrigo, S.I. Bozhevolnyi, L. Martín-Moreno, F.J. García-Vidal, Phys. Rev. Lett. 100, 023901 (2008)

    Article  ADS  Google Scholar 

  20. K. Tanaka, M. Tanaka, T. Sugiyama, Opt. Exp. 13, 256 (2005)

    Article  ADS  Google Scholar 

  21. L. Chen, B. Wang, G.P. Wang, Appl. Phys. Lett. 89, 243120 (2006)

    Article  ADS  Google Scholar 

  22. F. Liu, Y. Rao, Y. Huang, W. Zhang, J. Peng, Appl. Phys. Lett. 90, 141101 (2007)

    Article  ADS  Google Scholar 

  23. J. Tian, S. Yu, W. Yan, M. Qiu, Appl. Phys. Lett. 95, 013504 (2009)

    Article  ADS  Google Scholar 

  24. R. Yang, R.A. Wahsheh, Z. Lu, M.A.G. Abushagur, Opt. Lett. 35, 649 (2010)

    Article  Google Scholar 

  25. C. Delacour, S. Blaize, P. Grosse, J.M. Fedeli, A. Bruyant, R. Salas-Montiel, G. Lerondel, A. Chelnokov, Nano Lett. 10, 2922 (2010)

    Article  ADS  Google Scholar 

  26. R.M. Briggs, J. Grandidier, S.P. Burgos, E. Feigenbaum, H.A. Atwater, Nano Lett. 10, 4851 (2010)

    Article  ADS  Google Scholar 

  27. Q. Li, Y. Song, G. Zhou, Y. Su, M. Qiu, Opt. Lett. 35, 3153 (2010)

    Article  Google Scholar 

  28. Q. Li, M. Qiu, Opt. Exp. 18, 15531 (2010)

    Article  ADS  Google Scholar 

  29. F. Liu, R. Wan, Y. Li, Y. Huang, Y. Miura, D. Ohnishi, J. Peng, Appl. Phys. Lett. 95, 091104 (2009)

    Article  ADS  Google Scholar 

  30. F. Liu, R. Wan, Y. Huang, J. Peng, Opt. Lett. 34, 2697 (2009)

    Article  ADS  Google Scholar 

  31. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  ADS  Google Scholar 

  32. A. Yariv, J. Quantum Electron. 9, 919 (1973)

    Article  ADS  Google Scholar 

  33. D.K. Gramotnev, K.C. Vernon, D.F.P. Pile, Appl. Phys. B 93, 99 (2008)

    Article  ADS  Google Scholar 

  34. K.L. Chen, S. Wang, Appl. Phys. Lett. 44, 166 (1984)

    Article  ADS  Google Scholar 

  35. X. Sun, H. Liu, A. Yariv, Opt. Lett. 34, 280 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant No. 11104093), and “the Fundamental Research Funds for the Central Universities,” HUST: 2011QN041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Li, X. & Gao, D. An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform. Appl. Phys. B 111, 15–19 (2013). https://doi.org/10.1007/s00340-012-5300-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5300-6

Keywords

Navigation