Skip to main content
Log in

Pr:YAG temperature imaging in gas-phase flows

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, a new thermographic phosphor for planar gas-phase thermometry is investigated. The thermographic phosphor used is composed of trivalent praseodymium (Pr3+) ions doped into a yttrium aluminum garnet (YAG) host. Spectrally-resolved emission data were taken in a furnace for temperatures up to 1,300 K. The emission spectra were used to develop a temperature measurement strategy utilizing a non-equilibrium population ratio. The developed temperature measurement technique was demonstrated in a turbulent heated air jet for exit temperatures ranging from 300 to 750 K. The results demonstrate the promise of the Pr:YAG phosphor for obtaining high-precision single-shot temperature measurements in gas-phase flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. N. Fuhrmann, M. Schild, D. Bensing, S. Kaiser, C. Schulz, J. Brübach, A. Dreizler, Appl. Phys. B Lasers Opt. 106(4), 945–951 (2012)

    Google Scholar 

  2. S. Someya, M. Uchida, K. Tominaga, H. Terunuma, Y.R. Li, K. Okamoto, Int. J. Heat Mass Transf. 54, 3927 (2011)

    Article  Google Scholar 

  3. N. Fuhrmann, E. Baum, J. Brübach, A. Dreizler, Rev. Sci. Instrum. 82(10), 104903–104904 (2011)

    Google Scholar 

  4. J. Brübach, A. Patt, A. Dreizler, Appl. Phys. B Lasers Opt. 83, 499 (2006)

    Article  ADS  Google Scholar 

  5. A. Omrane, G. Sarner G, M. Aldén, Appl. Phys. B Lasers Opt. 79, 431 (2004)

  6. J.P. Feist, A.L. Heyes, K.L. Choy, B. Su, IEEE Proc. ICIASF 61, 1 (1999)

    Google Scholar 

  7. S. Alaruri, T. Bonsett, A. Brewington, E. McPheeters, M. Wilson, Opt. Lasers Eng. 31, 345 (1999)

    Article  Google Scholar 

  8. J.P. Feist, A.L. Heyes, S. Seefelt, Proc. Inst. Mech. Eng. Part A J. Power Energy 217, 193 (2003)

    Article  Google Scholar 

  9. R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, M. Aldén, Appl. Phys. B Lasers Opt. 88, 291 (2007)

    Article  ADS  Google Scholar 

  10. N. Takada, I. Sakata, H. Yanagihara, J. Lindén, M. Richter, M. Aldén, B. Johansson, SAE Technical Paper 2009-24-0033 (2009). doi:10.4271/2009-24-0033

  11. T. Katsumata, A. Fujita, Y. Kiyokawa, H. Aizawa, S. Komuro, Fluorescence thermo-sensor using Pr-doped YAG crystal. In: International Conference on Control, Automation and Systems, 2007, ICCAS ’07, pp. 2327–2330

  12. F.J. Suijver, Upconversion Phosphors, Chap. 6. (pp. 133–177,Wiley-VCH, Weinheim, 2008)

  13. W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook CRC Press/Taylor and Francis, Boca Raton, 2nd edn., (2007)

  14. Y.M. Cheung, S.K. Gayen, Phys. Rev. B 49, 14827 (1994)

    Article  ADS  Google Scholar 

  15. C.A. Morrison, R.P. Leavitt, Spectroscopic Properties of Triply Ionized Lanthanides in Transparent Host Crystals, Vol. 5, Chap. 46. (North-Holland Publishing Company, Amsterdam, 1982) pp. 461–692

  16. J.B. Gruber, M.E. Hills, R.M. Macfarlane, C.A. Morrison, G.A. Turner, Chem. Phys. 134, 241 (1989)

    Article  Google Scholar 

  17. J. Ganem, W.M. Dennis, W.M. Yen, J. Lumin. 54, 79 (1992)

    Article  Google Scholar 

  18. R. Pappalardo, J. Lumin. 14, 159 (1976)

    Article  Google Scholar 

  19. A.L. Heyes, J. Lumin. 129, 2004 (2009)

    Article  Google Scholar 

  20. W. Piper, J. DeLuca, F. Ham, J. Lumin. 8(4), 344–348 (1974)

  21. M.D. Chambers, D.R. Clarke, Ann. Rev. Mater. Res. 39, 325 (2009)

    Google Scholar 

  22. T. Kissel, E. Baum, A. Dreizler, J. Brübach, Appl. Phys. B Lasers Opt. 96, 731 (2009)

    Article  ADS  Google Scholar 

  23. S.F. Collins, G.W. Baxter, S.A. Wade, T. Sun, K.T.V. Grattan, Z.Y. Zhang, A.W. Palmer, J. Appl. Phys. 84, 4649 (1998)

    Article  ADS  Google Scholar 

  24. M.J. Weber, Solid State Commun. 12, 741 (1973)

    Article  ADS  Google Scholar 

  25. C.D. Donega, A. Meijerink, G. Blasse, J. Phys. Chem. Solids 56, 673 (1995)

    Article  ADS  Google Scholar 

  26. G.G. Grigoryan, Y.V. Orlov, E.A. Petrenko, A.Y. Shashkov, N.V. Znamenskiy, Laser Phys. 15, 602 (2005)

    Google Scholar 

  27. A. Kaminskii, L. Li, A. Butashin, V. Mironov, A. Pavlyuk, S. Bagayev, K. Ueda, Jpn. J. Appl. Phys. 36, 107 (1997)

    Article  ADS  Google Scholar 

  28. N. Kuleshov, V. Shcherbitsky, A. Lagatsky, V. Mikhailov, B. Minkov, T. Danger, T. Sandrock, G. Huber, J. Lumin. 71, 27 (1997)

    Article  Google Scholar 

  29. R. Percival, M. Phillips, D. Hanna, A. Tropper, IEEE J. Quant. Electron. 25, 2119 (1989)

    Article  ADS  Google Scholar 

  30. A. Omrane, P. Petersson, M. Aldén, M.A. Linne, Appl. Phys. B Lasers Opt. 92, 99 (2008)

    Article  ADS  Google Scholar 

  31. D. Rothamer, J. Jordan, Appl. Phys. B Lasers Opt. 106, 435 (2012)

    Article  ADS  Google Scholar 

  32. J.L. Caslavsky, D.J. Viechnicki, J. Mater. Sci. 15, 1709 (1980)

    Article  ADS  Google Scholar 

  33. J. Lindén, N. Takada, B. Johansson, M. Richter, M. Aldén, Appl. Phys. B Lasers Opt. 96, 237 (2009)

    Article  ADS  Google Scholar 

  34. P. Thevenaz, U.E. Ruttimann, M. Unser, IEEE Trans. Image Process. 7, 27 (1998)

    Article  ADS  Google Scholar 

  35. L.P. Goss, A.A. Smith, M.E. Post, Rev. Sci. Instrum. 60, 3702 (1989)

    Article  ADS  Google Scholar 

  36. K. Kontis, Y. Syogenji, N. Yoshikawa, Aeronaut. J. 106, 453 (2002)

    Google Scholar 

  37. D.R. Dowling, P.E. Dimotakis, J. Fluid Mech. 218, 109 (1990)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported through a Phase II STTR entitled “Simultaneous Particle Imaging Velocimetry and Thermometry (PIVT) in Reacting Flows”, awarded to Orbital Technologies Corporation (PI: Dr. Millicent Coil), contract # W911NF-11-C-0003), sponsored by the Army Research Office (technical monitor Ralph A. Anthenien Jr, PhD, PE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rothamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, J., Rothamer, D.A. Pr:YAG temperature imaging in gas-phase flows. Appl. Phys. B 110, 285–291 (2013). https://doi.org/10.1007/s00340-012-5274-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5274-4

Keywords

Navigation