Skip to main content
Log in

Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Temperature measurement in gaseous flows is of significant practical importance for determining convection coefficients for heat transfer calculations, validating computation fluid dynamic simulations, and understanding the fundamentals of turbulent mixing and transport in flows. Here, we report on a new diagnostic technique for measuring temperature in gaseous flows which relies upon upconversion luminescence from inorganic phosphors. The phosphor used for the study consists of erbium (Er3+) and ytterbium (Yb3+) ions doped into a yttrium oxysulfide host material. The theoretical background behind the upconversion diagnostic is presented and spectral emission data taken using upconversion excitation are used to design a temperature diagnostic which is quite sensitive for temperatures ranging from approximately 300–600 K. Demonstration temperature measurements were performed in an air jet heated to temperatures ranging from 295–523 K. Single-shot images of temperature were obtained with a temperature precision of approximately ±5 K (1 standard deviation basis). This is the first known application of upconversion excitation to imaging temperatures in gaseous flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Bessler, C. Schulz, Appl. Phys. B, Lasers Opt. 78, 519 (2004)

    Article  ADS  Google Scholar 

  2. M.P. Lee, B.K. McMillin, R.K. Hanson, Appl. Opt. 32, 5379 (1993)

    Article  ADS  Google Scholar 

  3. S. Kostka, S. Roy, P.J. Lakusta, T.R. Meyer, M.W. Renfro, J.R. Gord, R. Branam, Appl. Opt. 48, 6332 (2009)

    Article  Google Scholar 

  4. J.M. Seitzman, R.K. Hanson, P.A. Debarber, C.F. Hess, Appl. Opt. 33, 4000 (1994)

    Article  ADS  Google Scholar 

  5. R. Devillers, G. Bruneaux, C. Schulz, Appl. Opt. 47, 5871 (2008)

    Article  Google Scholar 

  6. J.L. Palmer, R.K. Hanson, Appl. Opt. 35, 485 (1996)

    Article  ADS  Google Scholar 

  7. J.B. Kelman, A.R. Masri, Appl. Opt. 33, 3992 (1994)

    Article  ADS  Google Scholar 

  8. J.B. Kelman, A.R. Masri, Combust. Sci. Technol. 122, 1 (1997)

    Article  Google Scholar 

  9. T. Niimi, T. Fujimoto, N. Shimizu, Opt. Lett. 15, 918 (1990)

    Article  ADS  Google Scholar 

  10. R.J. Hartfield, S.D. Hollo, J.C. McDaniel, Opt. Lett. 16, 106 (1991)

    Article  ADS  Google Scholar 

  11. D.G. Fletcher, J.C. McDaniel, Opt. Lett. 12, 16 (1987)

    Article  ADS  Google Scholar 

  12. M.C. Thurber, F. Grisch, R.K. Hanson, Opt. Lett. 22, 251 (1997)

    Article  ADS  Google Scholar 

  13. M.C. Thurber, Acetone laser-induced fluorescence for temperature and multiparameter imaging in gaseous flows. Ph.D., Stanford University, 1999

  14. S. Einecke, C. Schulz, V. Sick, Appl. Phys. B, Lasers Opt. 71, 717 (2000)

    Article  ADS  Google Scholar 

  15. D.A. Rothamer, J.A. Snyder, R.K. Hanson, R.R. Steeper, Appl. Phys. B, Lasers Opt. 99, 371 (2010)

    Article  ADS  Google Scholar 

  16. M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B, Lasers Opt. 91, 669 (2008)

    Article  ADS  Google Scholar 

  17. C. Strozzi, J. Sotton, A. Mura, M. Bellenoue, Meas. Sci. Technol. 20, 13 (2009)

    Article  Google Scholar 

  18. P.R. Medwell, Q.N. Chan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Applied Spectroscopy 64, 173

  19. P.R. Medwell, Q.N. Chan, P.A.M. Kalt, Z.T. Alwahabi, B.B. Dally, G.J. Nathan, Appl. Opt. 48, 1237 (2009)

    Article  ADS  Google Scholar 

  20. S. Kampmann, T. Seeger, A. Leipertz, Appl. Opt. 34, 2780 (1995)

    Article  ADS  Google Scholar 

  21. S. Kampmann, A. Leipertz, K. Dobbeling, J. Haumann, T. Sattelmayer, Appl. Opt. 32, 6167 (1993)

    Article  ADS  Google Scholar 

  22. D.C. Fourguette, R.M. Zurn, M.B. Long, Combust. Sci. Technol. 44, 307 (1986)

    Article  Google Scholar 

  23. F.Q. Zhao, H. Hiroyasu, Prog. Energy Combust. Sci. 19, 447 (1993)

    Article  Google Scholar 

  24. J. Zetterberg, Z.S. Li, M. Afzelius, M. Alden, Appl. Spectrosc. 62, 778 (2008)

    Article  ADS  Google Scholar 

  25. M. Boguszko, G.S. Elliott, Exp. Fluids 38, 33 (2005)

    Article  Google Scholar 

  26. J. Brubach, J. Zetterberg, A. Omrane, Z.S. Li, M. Alden, A. Dreizler, Appl. Phys. B, Lasers Opt. 84, 537 (2006)

    Article  ADS  Google Scholar 

  27. K. Kohse-Hoinghaus, J.B. Jeffries (eds.), Applied Combustion Diagnostics (Taylor & Francis, London, 2002)

    Google Scholar 

  28. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd edn., Combustion Science and Technology (Gordon & Breach, Amsterdam 1996)

    Google Scholar 

  29. F.J. Suijver, in: Luminescence, ed by C. Ronda (Wiley-VCH, Weinheim, 2008), pp. 133–177

    Google Scholar 

  30. F. Auzel, Chem. Rev. 104, 139 (2004)

    Article  Google Scholar 

  31. F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, J. Phys. Chem. B 107, 1107 (2003)

    Article  Google Scholar 

  32. C. Strohhofer, A. Polman, Opt. Mater. 21, 705 (2003)

    Article  ADS  Google Scholar 

  33. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley, New York, 1968)

    Google Scholar 

  34. O. Svelto, Principles of Lasers, 4 edn. (Springer, Berlin, 1998)

    Google Scholar 

  35. S.F. Collins, G.W. Baxter, S.A. Wade, T. Sun, K.T.V. Grattan, Z.Y. Zhang, A.W. Palmer, J. Appl. Phys. 84, 4649 (1998)

    Article  ADS  Google Scholar 

  36. S. Buddhudu, F.J. Bryant, J. Less-Common Met. 147, 213 (1989)

    Article  Google Scholar 

  37. M. Alencar, G.S. Maciel, C.B. de Araujo, A. Patra, Appl. Phys. Lett. 84, 4753 (2004)

    Article  ADS  Google Scholar 

  38. A.S.S. de Camargo, J.F. Possatto, L.A.D. Nunes, E.R. Botero, E.R.M. Andreeta, D. Garcia, J.A. Eiras, Solid State Commun. 137, 1 (2006)

    Article  ADS  Google Scholar 

  39. B. Dong, X.J. Wang, C.R. Li, D.P. Liu, IEEE Photonics Technol. Lett. 20, 117 (2008)

    Article  ADS  Google Scholar 

  40. B. Dong, T. Yang, M.K. Lei, Sens. Actuators B, Chem. 123, 667 (2007)

    Article  Google Scholar 

  41. P.V. dos Santos, M.T. de Araujo, A.S. Gouveia-Neto, J.A.M. Neto, A.S.B. Sombra, Appl. Phys. Lett. 73, 578 (1998)

    Article  ADS  Google Scholar 

  42. C.R. Li, S.F. Li, D. Dong, Z.F. Liu, C.L. Song, Q.X. Yu, Sens. Actuators B, Chem. 134, 313 (2008)

    Article  Google Scholar 

  43. C.R. Li, B. Dong, S.F. Li, C.H. Song, Chem. Phys. Lett. 443, 426 (2007)

    Article  ADS  Google Scholar 

  44. C.R. Li, B. Dong, C.G. Ming, M.K. Lei, Sensors 7, 2652 (2007)

    Article  Google Scholar 

  45. S.K. Singh, K. Kumar, S.B. Rai, Sens. Actuators A, Phys. 149, 16 (2009)

    Article  Google Scholar 

  46. R. Hasegawa, I. Sakata, H. Yanagihara, B. Johansson, A. Omrane, M. Alden, Appl. Phys. B, Lasers Opt. 88, 291 (2007)

    Article  ADS  Google Scholar 

  47. A. Omrane, P. Petersson, M. Alden, M.A. Linne, Appl. Phys. B, Lasers Opt. 92, 99 (2008)

    Article  ADS  Google Scholar 

  48. X. Luo, W. Cao, Sci. China, Ser. B, Chem. Life Sci. Earth Sci. 50, 505 (2007)

    Article  Google Scholar 

  49. J. Linden, N. Takada, B. Johansson, M. Richter, M. Alden, Appl. Phys. B, Lasers Opt. 96, 237 (2009)

    Article  ADS  Google Scholar 

  50. M.D. Chambers, D.R. Clarke, Annu. Rev. Mater. Res. 39, 325 (2009)

    Article  ADS  Google Scholar 

  51. P. Thevenaz, U.E. Ruttimann, M. Unser, IEEE Trans. Image Process. 7, 27 (1998)

    Article  ADS  Google Scholar 

  52. D.R. Dowling, P.E. Dimotakis, J. Fluid Mech. 218, 109 (1990)

    Article  ADS  Google Scholar 

  53. P.N. Papanicolaou, E.J. List, J. Fluid Mech. 195, 341 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rothamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothamer, D.A., Jordan, J. Planar imaging thermometry in gaseous flows using upconversion excitation of thermographic phosphors. Appl. Phys. B 106, 435–444 (2012). https://doi.org/10.1007/s00340-011-4707-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-011-4707-9

Keywords

Navigation