Skip to main content
Log in

Experimental characterization of bi-directional terahertz emission from gold-coated nanogratings

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The THz radiation emission of Au-coated nanogratings (fused silica substrate, 30 nm Au layer thickness, 500 nm grating constant) upon fs laser irradiation (785 nm, 150 fs, 1 kHz, ≤1 mJ/pulse) is observed in both directions along the laser beam axis (forward and backward) and for both, illumination of the Au/air or the Au/silica interface. THz radiation along the laser beam propagation is emitted in a narrow solid angle of about 15° fwhm independent on the laser pulse fluence, the angle of incidence and the nanograting profile. The bar width and groove depth of the nanograting as well as the angle of laser beam incidence strongly affect the THz radiation yield. The energy of single THz light pulses is measured absolutely (2 fJ in the 0.3–0.38 THz range) using a highly sensitive and fast superconducting transition edge sensor. The bi-directional emission of THz radiation is in agreement with the model assumption of surface plasmon polaritons propagating simultaneously on both Au layer interfaces (Au/air and Au/silica).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Tonouchi, Cutting-edge terahertz technology. Nat. Photonics 1, 97–105 (2007)

    Article  ADS  Google Scholar 

  2. C.A. Schuttenmaer, Exploring dynamics in the far-infrared with terahertz spectroscopy. Chem. Rev. 104, 1759–1779 (2004)

    Article  Google Scholar 

  3. M. Brucherseifer, M. Nagel, P. Haring-Bolivar, H. Kurz, A. Bosserhoff, R. Büttner, Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl. Phys. Lett. 77, 4049–4051 (2000)

    Article  ADS  Google Scholar 

  4. S. Hunsche, M. Koch, I. Brener, M.C. Nuss, THz near-field imaging. Opt. Commun. 150, 22–26 (1998)

    Article  ADS  Google Scholar 

  5. E.J. Heilweil, J.E. Maslar, W.A. Kimes, N.D. Bassim, P.K. Schenck, Characterization of metal oxide nanofilm morphologies and composition by terahertz transmission spectroscopy. Opt. Lett. 34, 1360–1362 (2009)

    Article  ADS  Google Scholar 

  6. T. May, S. Anders, V. Zakosarenko, M. Starkloff, H. G. Meyer, G. Thorwirth, E. Kreysa, A superconducting terahertz imager. In Proceedings of the SPIE, vol 6549, p. 65490D (2007).

  7. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, M. Koch, Room-temperature operation of an electrically driven terahertz modulator. Appl. Phys. Lett. 84, 3555 (2004)

    Article  ADS  Google Scholar 

  8. T. May, V. Zakosarenko, R. Boucher, E. Kreysa, H.G. Meyer, Superconducting bolometer array with SQUID readout for submillimetre wavelength detection. Supercond. Sci. Technol. 16, 1430–1433 (2003)

    Article  ADS  Google Scholar 

  9. B. Ferguson, X.C. Zhang, Materials for terahertz science and technology. Nat. Mater. 1, 26–33 (2002)

    Article  ADS  Google Scholar 

  10. C. Sirtori, C. Gmachl, F. Capasso, J. Faist, D.L. Sivco, A.L. Hutchinson, A.Y. Cho, Long-wavelength (8–11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998)

    Article  ADS  Google Scholar 

  11. J. Alton, H.E. Beere, J. Fowler, E.H. Linfield, and D.A. Ritchie, Low-threshold superlattice quantum cascade laser emitting at λ = 103 μm and operating up to 70 k in continuous wave. In Proceedings of the SPIE, 5354, vol 5354, p.129 (2005).

  12. E. Bründermann, D.R. Chamberlin, E.E. Haller, High duty cycle and continuous terahertz emission from germanium. Appl. Phys. Lett. 76, 2991–2993 (2000)

    Article  ADS  Google Scholar 

  13. T. Löffler, T. Hahn, M. Thomson, F. Jacob, H. Roskos, Large-area electro-optic ZnTe terahertz emitters. Opt. Express 13, 5353–5362 (2005)

    Article  ADS  Google Scholar 

  14. D.J. Cook, R.M. Hochstrasser, Intense terahertz pulses by four-wave rectification in air. Opt. Lett. 25, 1210–1212 (2000)

    Article  ADS  Google Scholar 

  15. T. Bartel, P. Gaal, K. Reimann, M. Woerner, T. Elsaesser, Generation of single-cycle THz transients with high electric-field amplitudes. Opt. Lett. 30, 2805–2807 (2005)

    Article  ADS  Google Scholar 

  16. D.H. Auston, K.P. Cheung, P.R. Smith, Picosecond photoconducting hertzian dipoles. Appl. Phys. Lett. 45, 284–286 (1984)

    Article  ADS  Google Scholar 

  17. S. Hoffmann, M. Hofmann, E. Brundermann, M. Havenith, M. Matus, J.V. Moloney, A.S. Moskalenko, M. Kira, S.W. Koch, S. Saito, K. Sakai, Four-wave mixing and direct terahertz emission with two-color semiconductor lasers. Appl. Phys. Lett. 84, 3585–3587 (2004)

    Article  ADS  Google Scholar 

  18. G.H. Welsh, K. Wynne, Generation of ultrafast terahertz radiation pulses on metallic nanostructured surfaces. Opt. Express 17, 2470–2480 (2009)

    Article  ADS  Google Scholar 

  19. G.H. Welsh, N.T. Hunt, K. Wynne, Terahertz-pulse emission through laser excitation of surface plasmons in a metal grating. Phys. Rev. Lett. 98, 026803 (2007)

    Article  ADS  Google Scholar 

  20. F. Kadlec, P. Kuzel, J.L. Coutaz, Optical rectification at metal surfaces. Opt. Lett. 29, 2674–2676 (2004)

    Article  ADS  Google Scholar 

  21. F. Kadlec, P. Kuzel, J.L. Coutaz, Study of terahertz radiation generated by optical rectification on thin gold films. Opt. Lett. 30, 1402–1404 (2005)

    Article  ADS  Google Scholar 

  22. F. Garwe, A. Schmidt, G. Zieger, T. May, K. Wynne, U. Hübner, M. Zeisberger, W. Paa, H. Stafast, H.G. Meyer, Bi-directional terahertz emission from gold coated nanogratings by excitation via femtosecond laser pulses. Appl. Phys. B 102, 551–554 (2011)

    Article  ADS  Google Scholar 

  23. G. Ramakrishnan, P.C.M. Planken, Percolation-enhanced generation of terahertz pulses by optical rectification on ultrathin gold films. Opt. Lett. 36, 2572–2574 (2011)

    Article  ADS  Google Scholar 

  24. P.Y. Han, X.C. Zhang, Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 12, 1747–1756 (2001)

    Article  ADS  Google Scholar 

  25. M. Kuttge, F.J. Garcíade Abajo, A. Polman, How grooves reflect and confine surface plasmon polaritons. Opt. Express 17, 10385–10392 (2009)

    Article  ADS  Google Scholar 

  26. K.D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detection. Appl. Phys. Lett. 66, 1998–2000 (1995)

    Article  ADS  Google Scholar 

  27. Y. Gao, M.K. Chen, C.E. Yang, Y.C. Chang, S. Yin, R. Hui, P. Ruffin, C. Brantley, E. Edwards, C. Luo, Analysis of terahertz generation via nanostructure enhanced plasmonic excitations. J. Appl. Phys. 106, 074302 (2009)

    Article  ADS  Google Scholar 

  28. H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, vol 111 of Springer Tracts in modern physics (Springer, Berlin, 1988)

  29. J. Moreland, A. Adams, P.K. Hansma, Diffraction efficiency and electron microscopy of large amplitude holographic gratings. Opt. Commun. 45, 11–16 (1983)

    Article  ADS  Google Scholar 

  30. I.R. Hooper, J.R. Sambles, Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces. Phys. Rev. B 70, 045421 (2004)

    Article  ADS  Google Scholar 

  31. E. Popov, N. Bonod, S. Enoch, Comparison of plasma surface waves on shallow and deep metallic 1d and 2d gratings. Opt. Express 15, 4224–4237 (2007)

    Article  ADS  Google Scholar 

  32. J. Le Perchec, P. Quemerais, A. Barbara, T. Lopez-Rios, Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light. Phys. Rev. Lett. 100, 066408 (2008)

    Article  ADS  Google Scholar 

  33. E.N. Economou, Surface plasmons in thin films. Phys. Rev. 182, 539–553 (1969)

    Article  ADS  Google Scholar 

  34. F. Garwe, U. Bauerschäfer, A. Csaki, A. Steinbrück, K. Ritter, A. Bochmann, J. Bergmann, A. Weise, D. Akimov, G. Maubach, K. König, G. Hüttmann, W. Paa, J. Popp, W. Fritzsche, Optically controlled thermal management on the nanometer length scale. Nanotechnology 19, 055207 (2008)

    Article  Google Scholar 

  35. K. Sakai, (ed.), Terahertz optoelectronics, vol 97. In Topics in applied physics (Springer, Berlin, 2005).

  36. G. Klatt, F. Hilser, W. Qiao, M. Beck, R. Gebs, A. Bartels, K. Huska, U. Lemmer, G. Bastain, M.B. Johnston, M. Fischer, J. Faist, T. Dekorsy, Terahertz emission from lateral photo-dember currents. Opt. Express 18, 4939–4947 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Dr. J. Bergmann, M. Schubert, A. Reinhard and C. Schmidt from the Institute of Photonic Technology, Jena, Germany, for helpful discussions and technical support, respectively. We are grateful for the sample characterization conducted by D. Schelle from the University of Jena, Germany, using their focused ion beam facility and scanning electron microscope. The authors thank K. Wynne, University of Strathclyde, UK, for our fruitful cooperation. The authors acknowledge support by the Thuringian ministry of education, science and culture (TeLIGHT, B714-09059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Garwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A., Garwe, F., Hübner, U. et al. Experimental characterization of bi-directional terahertz emission from gold-coated nanogratings. Appl. Phys. B 109, 631–642 (2012). https://doi.org/10.1007/s00340-012-5230-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-5230-3

Keywords

Navigation