Skip to main content
Log in

The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Dual-pulse laser-induced breakdown spectroscopy (LIBS) provides improved sensitivity compared to conventional single-pulse LIBS. We used a combination of Nd: yttrium aluminum garnet (YAG) and CO2 lasers to improve the sensitivity of LIBS. Significant emission intensity enhancement is noticed for both excited neutral lines and ionic lines for dual-pulse LIBS compared to single-pulse LIBS. However, the enhancement factor is found to be dependend on the energy levels of the lines, and resonance lines provided maximum enhancement. Our results indicate that IR reheating will cause significant improvement in sensitivity, regardless of the conditions, even with an unfocused reheating beam. The improved sensitivity with a YAG-CO2 laser combination is caused by the effective reheating of the pre-plume with a longer wavelength laser is due to efficient inverse Bremsstrahlung absorption. The role of the spot sizes, inter-pulse delay times, energies of the preheating and reheating pulses on the LIBS sensitivity improvements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Singh, S. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier Science, Amsterdam, 2007)

    Google Scholar 

  2. A. Ford, R. Waterbury, J. Rose, K. Pohl, M. Eisterhold, T. Thorn, K. Lee, E. Dottery, Proc. SPIE 7665, 76650Y (2010)

    Article  ADS  Google Scholar 

  3. A. Bol’shakov, J. Yoo, C. Liu, J. Plumer, R. Russo, Appl. Opt. 49, C132 (2009)

    Article  Google Scholar 

  4. D. Killinger, S. Allen, R. Waterbury, C. Stefano, E.L. Dottery, Opt. Express 15, 12905 (2007)

    Article  ADS  Google Scholar 

  5. B. Rashind, R. Ahmed, R. Ali, M.A. Baig, Phys. Plasmas 18, 073301 (2011)

    Article  ADS  Google Scholar 

  6. P. Benedetti, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, E. Tognoni, Spectrochim. Acta, Part B 60, 1392 (2005)

    Article  ADS  Google Scholar 

  7. G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, Appl. Phys. B 80, 559 (2005)

    Article  ADS  Google Scholar 

  8. R. Noll, R. Sattmann, V. Sturm, S. Winkelmarm, J. Anal. At. Spectrom. 19, 419 (2004)

    Article  Google Scholar 

  9. L. St-Onge, V. Detalle, M. Sabsabi, Spectrochim. Acta, Part B 57, 121 (2002)

    Article  ADS  Google Scholar 

  10. J. Uebbing, J. Brust, W. Sdorra, F. Leis, K. Niemax, Appl. Spectrosc. 45, 1419 (1991)

    Article  ADS  Google Scholar 

  11. A. Bogaerts, Z.Y. Chen, R. Gijbels, A. Vertes, Spectrochim. Acta, Part B 58, 1867 (2003)

    Article  ADS  Google Scholar 

  12. X. Pu, N. Cheung, Appl. Spectrosc. 57, 588 (2003)

    Article  ADS  Google Scholar 

  13. X. Pu, W. Ma, N. Cheung, Appl. Phys. Lett. 83, 3416 (2003)

    Article  ADS  Google Scholar 

  14. S. Lui, N. Cheung, Anal. Chem. 77, 2617 (2005)

    Article  Google Scholar 

  15. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Spectrochim. Acta, Part B 59, 723 (2004)

    Article  ADS  Google Scholar 

  16. L. Cabalin, J. Laserna, Spectrochim. Acta, Part B 53, 723 (1998)

    Article  ADS  Google Scholar 

  17. R. Russo, X. Mao, O. Borisov, H. Liu, J. Anal. At. Spectrom. 15, 1115 (2000)

    Article  Google Scholar 

  18. X. Mao, W. Chan, M. Shannon, R. Russo, J. Appl. Phys. 74, 4915 (1993)

    Article  ADS  Google Scholar 

  19. X. Mao, W. Chan, M. Caetano, M. Shannon, R. Russo, Appl. Surf. Sci. 96, 126 (1996)

    Article  ADS  Google Scholar 

  20. J. Aguilera, C. Aragon, F. Penalba, Appl. Surf. Sci. 127, 309 (1998)

    Article  ADS  Google Scholar 

  21. K. Eland, D. Stratis, J. Carter, S. Angel, Proc. SPIE 3853, 288 (1999)

    Article  ADS  Google Scholar 

  22. S. Harilal, B. O’Shay, M. Tillack, M. Mathew, J. Appl. Phys. 98, 013306 (2005)

    Article  ADS  Google Scholar 

  23. H. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York, 1974)

    Google Scholar 

  24. N. Konjevic, A. Lesage, J.R. Fuhr, W.L. Wiese, J. Phys. Chem. Ref. Data 31, 819 (2002)

    Article  ADS  Google Scholar 

  25. J. Chang, B. Warner, Appl. Phys. Lett. 69, 473 (1996)

    Article  ADS  Google Scholar 

  26. R. Waterbury, A. Pal, D. Killinger, J. Rose, E. Dottery, G. Ontai, Proc. SPIE 6954, 95409 (2008)

    Google Scholar 

  27. Y. Ralchenko, A. Kramida, J. Reader, NIST ASD Team, NIST atomic spectra database (ver. 4.0.1) (Online). National Institute of Standards and Technology, Gaithersburg, MD (2010)

  28. M. Asgill, M. Brown, K. Frische, W. Roquemore, D. Hahn, Appl. Opt. 49, C110 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Energy National Nuclear Security Administration under Award number DE-NA0001174.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. W. Coons.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coons, R.W., Harilal, S.S., Hassan, S.M. et al. The importance of longer wavelength reheating in dual-pulse laser-induced breakdown spectroscopy. Appl. Phys. B 107, 873–880 (2012). https://doi.org/10.1007/s00340-012-4997-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-012-4997-6

Keywords

Navigation