Skip to main content

Advertisement

Log in

Fluorescence characteristics of the fuel tracer 1-methylnaphthalene for the investigation of equivalence ratio and temperature in an oxygen-containing environment

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work, the fluorescence properties of the fuel tracer 1-methylnaphthalene (1-MN) are investigated in a calibration flow cell at elevated temperatures and pressures. This fuel tracer is well suited to investigate mixture formation in diesel engine applications, as 1-MN is a natural diesel fuel component. A tracer-LIF (laser-induced fluorescence) concept is developed that enables temperature measurements using a two-color approach in oxygen-containing gas mixtures. Furthermore, the potential for simultaneous measurement of equivalence ratio (fuel–air ratio, FAR) is evaluated. First, a picosecond Nd:YLF-laser at 263 nm in combination with a spectrograph and a streak unit was used to investigate the spectral fluorescence emission and fluorescence lifetimes. In addition, a nanosecond Nd:YAG-laser at 266 nm was used for fluorescence calibration with regard to equivalence ratio and temperature. All measurements were performed in an oxygen-containing environment at different equivalence ratios, temperatures up to 800 K and pressures up to 2.5 MPa. The dependency of the fluorescence emission on equivalence ratio was studied for varied fuel amount and air concentrations. The calibration data form the basis for investigations of fuel distribution and temperature under realistic engine conditions in an oxygen-containing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75 (2005)

    Article  Google Scholar 

  2. M.C. Thurber, F. Grisch, R.K. Hanson, Opt. Lett. 22, 251 (1997)

    Article  ADS  Google Scholar 

  3. J.D. Koch, R.K. Hanson, Appl. Phys. B 76, 319 (2003)

    Article  ADS  Google Scholar 

  4. J. Trost, L. Zigan, A. Leipertz, D. Sahoo, P.C. Miles, Appl. Opt. 52, 8001 (2013)

    Article  ADS  Google Scholar 

  5. S. Lind, U. Retzer, S. Will, L. Zigan, Proc. Combust. Inst. 36, 4497 (2017)

    Article  Google Scholar 

  6. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Phys. Chem. Chem. Phys. 6, 2940 (2004)

    Article  Google Scholar 

  7. S. Lind, S. Aßmann, L. Zigan, S. Will, Appl. Opt. 55, 1551 (2016)

    Article  ADS  Google Scholar 

  8. S.R. Engel, P. Koch, A. Braeuer, A. Leipertz, Appl. Opt. 48, 6643 (2009)

    Article  ADS  Google Scholar 

  9. A. Lozano, B. Yip, R.K. Hanson, Exp. Fluids 13, 369 (1992)

    Article  Google Scholar 

  10. S. Einecke, C. Schulz, V. Sick, Appl. Phys. B 71, 717 (2000)

    Article  ADS  Google Scholar 

  11. J. Trost, L. Zigan, A. Leipertz, Proc. Combust. Inst. 34, 3645 (2013)

    Article  Google Scholar 

  12. L. Zigan, J. Trost, A. Leipertz, Appl. Opt. 55, 1453 (2016)

    Article  ADS  Google Scholar 

  13. J. Reboux, D. Puechberty, F. Dionnet, SAE Tech. Pap. 94, 1994 (1988)

    Google Scholar 

  14. W. Ipp, J. Egermann, I. Schmitz, V. Wagner, A. Leipertz, M. Hartmann, M. Schenk, SAE Tech. Pap. 2001-01-1977 (2001)

  15. T. Blotevogel, M. Hartmann, H. Rottengruber, A. Leipertz, Appl. Opt. 47, 6488 (2008)

    Article  ADS  Google Scholar 

  16. P. Koch, M.G. Löffler, M. Wensing, A. Leipertz, Int. J. Engine Res. 11, 455 (2010)

    Article  Google Scholar 

  17. S. Lind, J. Trost, L. Zigan, A. Leipertz, S. Will, Proc. Combust. Inst. 35, 3783 (2015)

    Article  Google Scholar 

  18. T. Mederer, W. Friedrich, J. Trost, L. Zigan, M. Wensing, in 14. Int. Stuttgarter Symp. (2014), p. 349

  19. T. Mederer, M. Wensing, A. Leipertz, SAE Tech. Pap. 2013-01-0558 (2013)

  20. W. Friedrich, R. Grzeszik, P. Lauschke, V. Zelenov, M. Wensing, SAE Tech. Pap. 2017-01-0779 (2017)

  21. W. Friedrich, R. Grzeszik, M. Wensing, SAE Tech. Pap. 2015-24-2474 (2015)

  22. W. Ipp, Analyse der Kraftstoffverteilung bei der Benzindirekteinspritzung (BDE) mit laseroptischen Meßverfahren. ESYTEC GmbH, Dissertation FAU Erlangen-Nürnberg, 2004

  23. B. Peterson, D.L. Reuss, V. Sick, Combust. Flame 161, 240 (2014)

    Article  Google Scholar 

  24. J.D. Smith, V. Sick, Proc. Combust. Inst. 31, 747 (2007)

    Article  Google Scholar 

  25. S. Faust, G. Tea, T. Dreier, C. Schulz, Appl. Phys. B 110, 81 (2013)

    Article  ADS  Google Scholar 

  26. M. Luong, W. Koban, C. Schulz, J. Phys: Conf. Ser. 45, 133 (2006)

    ADS  Google Scholar 

  27. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 777 (2005)

    Article  ADS  Google Scholar 

  28. W. Koban, J.D. Koch, R.K. Hanson, C. Schulz, Appl. Phys. B 80, 147 (2005)

    Article  ADS  Google Scholar 

  29. S.A. Kaiser, M. Schild, C. Schulz, Proc. Combust. Inst. 34, 2911 (2013)

    Article  Google Scholar 

  30. B. Peterson, E. Baum, B. Böhm, V. Sick, A. Dreizler, Proc. Combust. Inst. 35, 2923 (2015)

    Article  Google Scholar 

  31. M. Luong, R. Zhang, C. Schulz, V. Sick, Appl. Phys. B 91, 669 (2008)

    Article  ADS  Google Scholar 

  32. B. Scott, C. Willman, B. Williams, P. Ewart, R. Stone, D. Richardson, SAE Int. J. Engines 10, 2191 (2017)

    Article  Google Scholar 

  33. P. Kranz, D. Fuhrmann, M. Goschütz, S. Kaiser, S. Bauke, K. Golibrzuch, H. Wackerbarth, P. Kawelke, J. Luciani, L. Beckmann, J. Zachow, M. Schuette, O. Thiele, T. Berg, SAE Tech. Pap. 2018-01-0633 (2018)

  34. K.H. Tran, P. Guibert, C. Morin, J. Bonnety, S. Pounkin, G. Legros, Combust. Flame 162, 3960 (2015)

    Article  Google Scholar 

  35. Q. Wang, Y. Zhang, L. Jiang, D. Zhao, P. Guibert, S. Yang, Appl. Phys. B 123, 242 (2017)

    Article  ADS  Google Scholar 

  36. S.A. Kaiser, M.B. Long, Proc. Combust. Inst. 30, 1555 (2005)

    Article  Google Scholar 

  37. M. Orain, P. Baranger, B. Rossow, F. Grisch, Appl. Phys. B 102, 163 (2011)

    Article  ADS  Google Scholar 

  38. I. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971)

    Google Scholar 

  39. B. Cheung, Tracer-based planar laser-induced fluorescence diagnostics: quantitative photophysics and time-resolved imaging. Stanford University, Dissertation Stanford, 2011

  40. F. Payri, J.V. Pastor, J.M. Pastor, J.E. Juliá, Int. J. Engine Res. 7, 77 (2006)

    Article  Google Scholar 

  41. J.O. Uy, E.C. Lim, Chem. Phys. Lett. 7, 306 (1970)

    Article  ADS  Google Scholar 

  42. P.C. Miles, D. Sahoo, S. Busch, J. Trost, A. Leipertz, SAE Int. J. Engines 6, 1888 (2013)

    Article  Google Scholar 

  43. J. Trost, L. Zigan, A. Leipertz, D. Sahoo, P.C. Miles, Int. J. Engine Res. 15, 741 (2014)

    Article  Google Scholar 

  44. G. Tea, G. Bruneaux, J.T. Kashdan, C. Schulz, Proc. Combust. Inst. 33, 783 (2011)

    Article  Google Scholar 

  45. R.P.C. Zegers, M. Yu, C. Bekdemir, N.J. Dam, C.C.M. Luijten, L.P.H. de Goey, Appl. Phys. B 112, 7 (2013)

    Article  ADS  Google Scholar 

  46. D. Sahoo, B. Petersen, P. Miles, SAE Int. J. Engines 4, 2312 (2011)

    Article  Google Scholar 

  47. Bronkhorst, FLUIDAT on the Net, http://www.fluidat.com

  48. ARAL, Safety Data Sheet for Diesel fuel according to DIN EN 590, https://www.aral.de/content/dam/aral/PDFs/Sicherheitsdatenbltter/Kraft_und_Brennstoffe/englisch/SGY2181_Aral%20Diesel_EN.pdf

  49. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA), GESTIS-Stoffdatenbank, http://www.dguv.de

  50. I. Glassman, R.A. Yetter, N.G. Glumac, Combustion (Academic, Boston, 2014)

    Google Scholar 

  51. Verein Deutscher Ingenieure VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurswesen (GVC), VDI-Heat Atlas, vol. 11 (Springer, Berlin, 2013)

  52. A.H. Lefebvre, V.G. McDonell, Atomization and Sprays (CRC Press, Boca Raton, 2017)

    Book  Google Scholar 

  53. M. Suto, X. Wang, J. Shan, L.C. Lee, J. Quant. Spectrosc. Radiat. Transf. 48, 79 (1992)

    Article  ADS  Google Scholar 

  54. S. Lind, Multi-Parameter-Untersuchung der Gemischbildung in Verbrennungsmotoren unter Einsatz der laserinduzierten Fluoreszenz. Shaker Verlag, Dissertation FAU Erlangen-Nürnberg, 2016

  55. T. Benzler, S. Faust, T. Dreier, C. Schulz, Appl. Phys. B 121, 549 (2015)

    Article  ADS  Google Scholar 

  56. C. Albrecht, in Principles of fluorescence spectroscopy ed. by J.R. Lakowicz, Analytical and Bioanalytical Chemistry, 3rd edn (Springer, Baltimore, 2008)

  57. S.M. Faust, Characterisation of organic fuel tracers for laser-based quantitative diagnostics of fuel concentration, temperature, and equivalence ratio in practical combustion processes. Universität Duisburg-Essen, Dissertation Duisburg-Essen, 2013

  58. B. Rossow, Photophysical processes of organic fluorescent molecules and kerosene—application to combustion engines. Université Paris-Sud, Dissertation Paris, 2011

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the German Research Foundation (DFG-Zi 1384/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Zigan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Retzer, U., Fink, W., Will, T. et al. Fluorescence characteristics of the fuel tracer 1-methylnaphthalene for the investigation of equivalence ratio and temperature in an oxygen-containing environment. Appl. Phys. B 125, 124 (2019). https://doi.org/10.1007/s00340-019-7236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7236-6

Navigation