Skip to main content
Log in

Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A fast tomographic reconstruction device has been developed to detect the two-dimensional distribution of the chemiluminescence of OH* in the reaction zones of flames. In the set-up, special emphasis was placed on the applicability of the technique to turbulent flames. A spatial resolution of the system, <1–2 mm, and an exposure time of 100–200 μs are required to resolve the chemiluminescence signal of OH* originating from the folded flame front of a turbulent flame.

The tomographic system is realised by a set of 10 Kepler-telescopes surrounding the investigated object from different angles. The chemiluminescence signal collected by each telescope is imaged onto the face surface of an optical cable. The latter consists of 90 single fibres, which are arranged equidistantly from each other, in a single row. The opposite ends of these 10 cables/900 fibres are merged together in a light collector, which images the output signal of all the fibres onto the entrance window of an intensified CCD-camera. The telescopes are used to adapt the size of the investigated object to the size of the image intensifier of the CCD-camera. Additionally, an iris aperture positioned in the focal plane of the objective lens of the telescope guarantees, that only parallel rays can pass the system. The signal information of these 90 parallel rays obtained under 10 different angles is used for the tomographic reconstruction. The aperture of the iris inside the telescope limits the optical resolution of the telescopes, as well as the light intensity transmitted through the telescope.

A series of single shot experiments were carried out in various laminar diffusion and specially-shaped premixed flat flames to investigate the limits of the apparatus and the tomographic algorithm with respect to the exposure times as well as geometric resolution. In these experiments reasonable temporal and spatial resolution of the instantaneous OH* distributions are obtained at exposure times down to 100 μs so that this technique can be successfully applied to turbulent flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Candel, Proc. Combust. Inst. 29, 1 (2002)

    Article  Google Scholar 

  2. W. Lang, D. Vortmeyer, Combust. Sci. Technol. 54, 399 (1987)

    Article  Google Scholar 

  3. G.A. Richards, J. Eng. Gas Turbines Power 120, 294 (1998)

    Article  Google Scholar 

  4. R.C. Steele, L.H. Cowell, S.M. Cannon, C.E. Smith, J. Eng. Gas Turbines Power 122, 412 (2000)

    Article  Google Scholar 

  5. T. Lieuwen, H. Torres, C. Johnson, B.T. Zinn, J. Eng. Gas Turbines Power 123, 182 (2001)

    Article  Google Scholar 

  6. J.-Y. Lee, E. Lubarsky, B.T. Zinn, Proc. Combust. Inst. 30, 1757 (2004)

    Article  Google Scholar 

  7. M. Lohrmann, H. Büchner, Combust. Sci. Technol. 177, 2243 (2005)

    Article  Google Scholar 

  8. X. Huang, W.T. Baumann, Combust. Sci. Technol. 179, 617 (2007)

    Article  Google Scholar 

  9. V. Di Sarli, F.S. Marra, A. Di Benedetto, Combust. Sci. Technol. 179, 2335 (2007)

    Article  Google Scholar 

  10. Z.M. Ibrahim, F.A. Williams, S.G. Buckley, C.Z. Twardochleb, J. Eng. Gas Turbines Power 130, 051506 (2008)

    Article  Google Scholar 

  11. P.H. Paul, H.N. Najm, Proc. Combust. Inst. 27, 43 (1998)

    Google Scholar 

  12. J.E. Rehm, P.H. Paul, Proc. Combust. Inst. 28, 1775 (2000)

    Article  Google Scholar 

  13. B.O. Ayoola, R. Balachandran, J.H. Frank, E. Mastorakos, C.F. Kaminski, Combust. Flame 144, 1 (2006)

    Article  Google Scholar 

  14. A.G. Gaydon, The Spectroscopy of Flames (Chapman and Hall, London, 1974)

    Google Scholar 

  15. Y. Hardalupas, M. Orain, Combust. Flame 139, 188 (2004)

    Article  Google Scholar 

  16. N. Docquier, S. Candel, Prog. Energy Combust. Sci. 28, 107 (2002)

    Article  Google Scholar 

  17. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, Z. Qin, See http://www.me.berkeley.edu/gri_mech/

  18. S.L.N.G. Krishnamachari, H.P. Broida, J. Chem. Phys. 34, 1709 (1961)

    Article  ADS  Google Scholar 

  19. R.P. Porter, A.H. Clark, W.E. Browne, Proc. Combust. Inst. 11, 907 (1967)

    Google Scholar 

  20. S.A. Carl, M. Van Poppel, J. Peeters, J. Phys. Chem. A 107, 11001 (2003)

    Article  Google Scholar 

  21. D.S. Dandy, S.R. Vosen, Combust. Sci. Tech. 82, 131 (1992)

    Article  Google Scholar 

  22. M. De Leo, A. Saveliev, L.A. Kennedyand, S.A. Zelepouga, Combust. Flame 149, 435 (2007)

    Article  Google Scholar 

  23. B. Higgins, M.Q. McQuay, F. Lacas, J.C. Rolon, N. Darabiha, S. Candel, Fuel 80, 67 (2001)

    Article  Google Scholar 

  24. B. Higgins, M.Q. McQuay, F. Lacas, S. Candel, Fuel 80, 1583 (2001)

    Article  Google Scholar 

  25. C.J. Dasch, Appl. Opt. 31, 1146 (1992)

    Article  ADS  Google Scholar 

  26. J. Hentschel, R. Suntz, H. Bockhorn, Appl. Opt. 44, 6673 (2005)

    Article  ADS  Google Scholar 

  27. G. Herding, R. Snyder, C. Rolon, S. Candel, J. Propuls. Power 13, 146 (1998)

    Article  Google Scholar 

  28. D. Kendrick, G. Herding, P. Scouflaire, J.C. Rolon, S. Candel, Combust. Flame 118, 327 (1999)

    Article  Google Scholar 

  29. M. Juniper, A. Tripathi, P. Scouflaire, J.C. Rolon, S. Candel, Proc. Combust. Inst. 28, 1103 (2000)

    Article  Google Scholar 

  30. G. Singla, P. Scouflaire, C. Rolon, S. Candel, Proc. Combust. Inst. 30, 2921 (2005)

    Article  Google Scholar 

  31. S.R. Deans, The Radon Transform and Some of Its Applications (Wiley, New York, 1983)

    MATH  Google Scholar 

  32. J. Radon, Verh. Sächs. Akad. Wiss. Leipzig, Math.-Nat. Kl. 69, 262 (1917)

    Google Scholar 

  33. J. Floyd, P. Geipel, A.M. Kempf, Proceedings of 14 European Combustion Meeting, Vienna, paper 810365 (14–17 April, 2009)

  34. H.M. Hertz, G.W. Faris, Opt. Lett. 13, 351 (1988)

    Article  ADS  Google Scholar 

  35. H.M. Hertz, Opt. Commun. 54, 131 (1985)

    Article  ADS  Google Scholar 

  36. G.W. Faris, R.L. Byer, Opt. Lett. 12, 155 (1987)

    Article  ADS  Google Scholar 

  37. W. Alwang, L. Cavanaugh, R. Burr, A. Hauer, Final Rep. PWA-3942 (Pratt and Whitney, East Hartford, 1970)

    Google Scholar 

  38. P.J. Emmerman, R. Goulard, R.J. Santoro, H.G. Semerjian, Energy 4, 70 (1980)

    Article  Google Scholar 

  39. H. Uchiyama, M. Nakajima, S. Yuta, Appl. Opt. 24, 4111 (1985)

    Article  ADS  Google Scholar 

  40. J. Warnatz, U. Maas, R.W. Dibble, Combustion (Springer, Heidelberg/New York, 1996)

    Google Scholar 

  41. Y. Ishino, N. Ohiwa, JSME, Ser. B 48, 34 (2005)

    Article  ADS  Google Scholar 

  42. M.N. Wernick, J.N. Aarsvold (eds.), Emission Tomography: The Fundamentals of PET and SPECT (Elsevier/Academic Press, San-Diego/London, 2004)

    Google Scholar 

  43. O. Dössel, Bildgebende Verfahren in der Medizin. Von der Technik zur medizinischen Anwendung (Springer, Berlin/Heidelberg, 2000)

    MATH  Google Scholar 

  44. G.T. Herman, Image Reconstruction from Projections: The Fundamentals of Computerized Tomography (Academic Press, New York, 1980)

    MATH  Google Scholar 

  45. A.C. Kak, M. Slaney, Principles of Computerised Tomographic Imaging (IEEE Press, New York, 1988)

    Google Scholar 

  46. C. Imperiale, A. Imperiale, Measurement 37, 218 (2005)

    Article  Google Scholar 

  47. L. Shepp, B. Logan, IEEE Trans. Nuclear Sci. 21, 21 (1974)

    Article  Google Scholar 

  48. L. Shepp, B. Logan, IEEE Trans. Nuclear Sci. 21, 228 (1974)

    Article  ADS  Google Scholar 

  49. P. Maréchal, D. Togane, A. Celler, IEEE Trans. Nuclear Sci. 47, 1595 (2000)

    Article  ADS  Google Scholar 

  50. A.N. Tikhonov, V.A. Arsenin, Solution of Ill-Posed Problems (Winston & Sons, Washington, 1977)

    Google Scholar 

  51. P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, London, 1981)

    MATH  Google Scholar 

  52. C.L. Lawson, R.J. Hanson, Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, 1974)

    MATH  Google Scholar 

  53. S. Oraintara, W.C. Karl, D.A. Castanon, T.Q. Nguyen, Int. Conf. Image Process. 1, 93 (2000)

    Google Scholar 

  54. M.N. Levin, A.V. Tatarintzev, A.E. Akhkubekov, Semiconductors 43, 613 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suntz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anikin, N., Suntz, R. & Bockhorn, H. Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames. Appl. Phys. B 100, 675–694 (2010). https://doi.org/10.1007/s00340-010-4051-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-010-4051-5

Keywords

Navigation