Skip to main content
Log in

Minimally intrusive optical probe for in situ shock tube measurements of temperature and species via tunable IR laser absorption

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An optical probe was developed for in situ laser absorption spectroscopy measurements of target species concentration and temperature near a shock tube endwall. The optical components of a single-ended sensor, including two sapphire rods with a separation of 2.8 cm (effective optical path length), were coupled with a custom-machined shock tube end cap. This hardware design—complemented by a scanned wavelength direct absorption (scanned DA) optical sensing scheme, targeting CO2—enabled minimally invasive, sensitive and spatially resolved measurement of CO2 along the shock tube axis in the reflected shock region. Scanned direct absorption of two adjacent, discrete, rovibrational features in the ν3 fundamental band of CO2 near 4.2 µm, with a single interband cascade laser, allowed measurement of temperature from the ratio of integrated absorbances. Several tests were conducted to validate the accuracy of the sensor and confirm that shock conditions were unperturbed by the probe. The probe-measured temperature and CO2 mol fraction in the reflected shock region, accurate within ~ 1 and ~ 5%, respectively, at a rate of 20 kHz, in shocks with 1–7% carbon dioxide diluted in argon or nitrogen and at temperatures of 1200–2000 K and pressures of 0.7–1.2 bar. Agreement with multiple metrics for validation was confirmed. No evidence of perturbed shock conditions was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. G. Gaydon, I. R. Hurle: The Shock Tube in High-Temperature Chemical Physics (Reinhold, 1963)

  2. R.K. Hanson, D.F. Davidson, Recent advances in laser absorption and shock tube methods for studies of combustion chemistry. Prog. Energy Comb. Sci. 44, 103–114 (2014)

    Article  Google Scholar 

  3. R.K. Hanson, Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems. Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  4. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, Berlin, 2016)

    Book  Google Scholar 

  5. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser absorption sensing for combustion flows (Prog. Energy Combust., Sci, 2016)

    Google Scholar 

  6. J.W. Hargis, E.L. Petersen, Shock-tube boundary-layer effects on reflected-shock conditions with and without CO2. AIAA J. 55(3), 902–912 (2017)

    Article  ADS  Google Scholar 

  7. M. Ihme, Y. Sun, R. Deiterding: Detailed simulations of shock-bifurcation and ignition of an argon-diluted hydrogen/oxygen mixture in a shock tube. AIAA Paper, (January), AIAA-2013-0538 (2013)

  8. E.L. Petersen, R.K. Hanson, Nonideal effects behind reflected shock waves in a high-pressure shock tube. Shock Waves 10, 405–420 (2001)

    Article  ADS  Google Scholar 

  9. V.A. Troutman, C.L. Strand, M.F. Campbell, A.M. Tulgestke, V.A. Miller, D.F. Davidson, R.K. Hanson, High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall. Appl. Phys. B: Lasers Opt. 122(3), 1–7 (2016)

    Article  Google Scholar 

  10. M.F. Campbell, S. Wang, C.S. Goldenstein, R.M. Spearrin, A.M. Tulgestke, L. Zaczek, R.K. Hanson, Constrained reaction volume shock tube study of n-heptane oxidation: ignition delay times and time-histories of multiple species and temperature. Proc. Combust. Inst. 35(1), 231–239 (2015)

    Article  Google Scholar 

  11. J.J. Girard, R.M. Spearrin, C.S. Goldenstein, R.K. Hanson, Compact optical probe for flame temperature and carbon dioxide using interband cascade laser absorption near 4.2 um. Combust. Flame 178, 158–167 (2017)

    Article  Google Scholar 

  12. L.S. Rothman et al., The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  13. M.F. Campbell, T. Parise, A.M. Tulgestke, R.M. Spearrin, D.F. Davidson, R.K. Hanson, Strategies for obtaining long constant-pressure test times in shock tubes. Shock Waves 25(6), 651–665 (2015)

    Article  ADS  Google Scholar 

  14. R. M. Spearrin, W. Ren, J. B. Jeffries, R. K. Hanson: Multi-band infrared CO2 absorption sensor for sensitive temperature and species measurements in high-temperature gases. Appl. Phys. B 116, 855–865 (2014)

    Article  ADS  Google Scholar 

  15. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser-absorption sensing for combustion gases, vol. 60 (Pergamon, 2017), pp. 132–176

  16. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, TDL absorption sensors for gas temperature and concentrations in a high-pressure entrained-flow coal gasifier. Proc. Combust. Inst. 34, 3593–3601 (2013)

    Article  Google Scholar 

  17. M.E. Webber, R. Claps, F.V. Englich, F.K. Tittel, J.B. Jeffries, R.K. Hanson, Measurements of NH3 and CO2 with distributed-feedback diode lasers near 2.0 μm in bioreactor vent gases. Appl. Opt. 40, 4395 (2001)

    Article  ADS  Google Scholar 

  18. R. Sur, K. Sun, J. B. Jeffries, R. K. Hanson: Multi-species laser absorption sensors for in situ monitoring of syngas composition. Appl. Phys. B 115, 9–24 (2013)

    Article  ADS  Google Scholar 

  19. A. Farooq, J.B. Jeffries, R.K. Hanson, CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm. Appl. Phys. B 90, 619–628 (2008)

    Article  ADS  Google Scholar 

  20. W. Ren, J.B. Jeffries, R.K. Hanson, Temperature sensing in shock-heated evaporating aerosol using wavelength-modulation absorption spectroscopy of CO2 near 2.7 µm. Meas. Sci. Technol. 21, 105603 (2010)

    Article  ADS  Google Scholar 

  21. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Fiber-coupled 2.7 µm laser absorption sensor for CO2 in harsh combustion environments. Meas. Sci. Technol. 24, 55107 (2013)

    Article  Google Scholar 

  22. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Infrared laser absorption sensors for multiple performance parameters in a detonation combustor. Proc. Combust. Inst. 35, 3739–3747 (2015)

    Article  Google Scholar 

  23. R.M. Spearrin, C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Simultaneous sensing of temperature, CO, and CO2 in a scramjet combustor using quantum cascade laser absorption spectroscopy. Appl. Phys. B 117, 689–698 (2014)

    Article  Google Scholar 

  24. W. Ren, R.M. Spearrin, D.F. Davidson, R.K. Hanson, Experimental and modeling study of the thermal decomposition of C3-C5 ethyl esters behind reflected shock waves. J. Phys. Chem. A 118, 1785–1798 (2014)

    Article  Google Scholar 

  25. W.Y. Peng, C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Single-ended mid-infrared laser-absorption sensor for simultaneous in situ measurements of H2O, CO2, CO, and temperature in combustion flows. Appl. Opt. 55, 9347–9359 (2016)

    Article  ADS  Google Scholar 

  26. M.E. Thomas, R. Joseph, W.J. Tropf, Infrared transmission properties of sapphire, spinel, yttria, and ALON as a function of temperature and frequency. Appl. Opt. 27, 239–245 (1988)

    Article  ADS  Google Scholar 

  27. L.H. Ma, L.Y. Lau, W. Ren, Non-uniform temperature and species concentration measurements in a laminar flame using multi-band infrared absorption spectroscopy. Appl. Phys. B: Lasers Opt. 123(3), 1–9 (2017)

    Article  ADS  Google Scholar 

  28. G. Kamimoto, H. Matsui, Vibrational relaxation of carbon dioxide in argon. J. Chem. Phys. 53(10), 3990–3993 (1970)

    Article  ADS  Google Scholar 

  29. R.L. Taylor, S. Bitterman, Experimental measurements of the resonant vibrational energy Transfer between mode ν3 of CO2 and N2*. J. Chem. Phys. 50(4), 1720–1726 (1968)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research through AFOSR Grant no. FA9550-14-1-0235, with Dr. Chiping Li as contract monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Girard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, J.J., Hanson, R.K. Minimally intrusive optical probe for in situ shock tube measurements of temperature and species via tunable IR laser absorption. Appl. Phys. B 123, 264 (2017). https://doi.org/10.1007/s00340-017-6840-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6840-6

Navigation