Skip to main content
Log in

Magnetic Faraday modulation spectroscopy of the 1–0 band of 14NO and 15NO

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Magnetic rotation spectroscopy signals of the nitric oxide (NO) fundamental band near 5 μm have been observed and compared with calculated signals. This spectroscopic approach exploits magnetic field modulation in the Faraday configuration for very sensitive detection of NO. Line shapes and strengths of the Faraday signals depend on molecular parameters, like J and Ω quantum numbers of the transitions involved, and on experimental parameters, like pressure of the gas sample and applied external magnetic field strength. In this study we implemented a software model which provides a simulation of the complete v=1–0 Faraday spectrum of NO. The algorithm considers the magnetic field modulation, the collisional and Doppler broadening of the line shapes, and the line intensities of 14NO and 15NO fundamental band lines. Optimum values for pressure and magnetic field modulation for maximum sensitivity are given. Suitable spectral windows for simultaneous detection of 14NO and 15NO are discussed. Experimental data were obtained in the wavenumber region from 1840 to 1900 cm−1 by means of a CO sideband laser and a quantum cascade laser. Comparison between calculated and observed signals shows excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Litfin, C.R. Pollock, R.F. Curl, F.K. Tittel, Sensitivity enhancement of laser absorption spectroscopy by magnetic rotation effect. J. Chem. Phys. 72, 6602 (1980)

    Article  ADS  Google Scholar 

  2. A. Hinz, J. Pfeiffer, W. Bohle, W. Urban, Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection. Mol. Phys. 45, 1131 (1982)

    Article  ADS  Google Scholar 

  3. M.C. McCarthy, J.C. Bloch, R.W. Field, Frequency-modulation enhanced magnetic rotation spectroscopy: A sensitive and selective absorption scheme for paramagnetic molecules. J. Chem. Phys. 100, 6331 (1994)

    Article  ADS  Google Scholar 

  4. R.J. Brecha, L.M. Pedrotti, D. Krause, Magnetic rotation spectroscopy of molecular oxygen with a diode laser. J. Opt. Soc. Am. B 14, 1921 (1997)

    Article  ADS  Google Scholar 

  5. M. Koch, X. Luo, P. Mürtz, W. Urban, K. Mörike, Detection of small traces of 15N2 and 14N2 by Faraday LMR spectroscopy of the corresponding isotopomers of nitric oxide. Appl. Phys. B 64, 683 (1997)

    Article  ADS  Google Scholar 

  6. P. Mürtz, L. Menzel, W. Bloch, A. Hess, O. Michel, W. Urban, LMR spectroscopy: A new sensitive method for on-line recording of nitric oxide in breath. J. Appl. Physiol. 86, 1075 (1999)

    Google Scholar 

  7. H. Ganser, W. Urban, J.M. Brown, The sensitive detection of NO by Faraday modulation spectroscopy with a quantum cascade laser. Mol. Phys. 101, 545 (2003)

    Article  ADS  Google Scholar 

  8. H. Ganser, M. Horstjann, C.V. Suschek, P. Hering, M. Mürtz, Online monitoring of biogenic nitric oxide with a QC laser-based Faraday modulation technique. Appl. Phys. B 78, 513 (2004)

    Article  ADS  Google Scholar 

  9. W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation, 3rd edn. (Springer, Berlin, 2002), pp. 64–67

    Google Scholar 

  10. M. Mürtz, B. Frech, P. Palm, R. Lotze, W. Urban, Tunable carbon monoxide overtone laser sideband system for precision spectroscopy from 2.6 to 4.1 μm. Opt. Lett. 23, 58 (1998)

    Article  ADS  Google Scholar 

  11. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, The HITRAN 2004 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 96, 139 (2005)

    Article  ADS  Google Scholar 

  12. W. Herrmann, W. Rohrbeck, W. Urban, Line shape analysis for Zeeman modulation spectroscopy. Appl. Phys. 22, 71 (1980)

    Article  ADS  Google Scholar 

  13. H. Ganser, B. Frech, A. Jentsch, M. Mürtz, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Investigation of the spectral width of quantum cascade laser emission near 5.2 μm by a heterodyne experiment. Opt. Commun. 197, 127 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mürtz.

Additional information

Sabana is a guest researcher from: University of Douala, Cameroon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritsch, T., Horstjann, M., Halmer, D. et al. Magnetic Faraday modulation spectroscopy of the 1–0 band of 14NO and 15NO. Appl. Phys. B 93, 713–723 (2008). https://doi.org/10.1007/s00340-008-3223-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3223-z

PACS

Navigation