Skip to main content
Log in

Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Within the last decade mid-infrared absorption spectroscopy between 3 and 20 μm, known as infrared laser absorption spectroscopy (IRLAS) and based on tuneable semiconductor lasers, namely lead salt diode lasers, often called tuneable diode lasers (TDL), and quantum cascade lasers (QCL) has progressed considerably as a powerful diagnostic technique for in situ studies of the fundamental physics and chemistry of molecular plasmas. The increasing interest in processing plasmas containing hydrocarbons, fluorocarbons, organo-silicon and boron compounds has lead to further applications of IRLAS because most of these compounds and their decomposition products are infrared active. IRLAS provides a means of determining the absolute concentrations of the ground states of stable and transient molecular species, which is of particular importance for the investigation of reaction kinetics. Since plasmas with molecular feed gases are used in many applications such as thin film deposition, semiconductor processing, surface activation and cleaning, and materials and waste treatment, this has stimulated the adaptation of infrared spectroscopic techniques to industrial requirements. The recent development of QCLs offers an attractive new option for the monitoring and control of industrial plasma processes as well as for highly time-resolved studies on the kinetics of plasma processes.

The aim of the present article is twofold: (i) to review recent achievements in our understanding of molecular phenomena in plasmas using TDLs and (ii) to report on selected new applications of QCLs in the mid-infrared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Röpcke, P.B. Davies, F. Hempel, B.P. Lavrov, Emission and Absoption Spectroscopy, in: Low Temperature Plasmas – Fundamentals, Technologies and Techniques, ed. by R. Hippler, H. Kersten, M. Schmidt, K.H. Schönbach (Wiley-VCH, Berlin, 2008), Vol. 1, pp. 215–242

  2. J. Röpcke, G. Lombardi, A. Rousseau, P.B. Davies, Plasma Sources Sci. Technol. 15, S148 (2006)

  3. M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, F.J. de Hoog, J. Vac. Sci. Technol. A 14, 380 (1996)

    Article  ADS  Google Scholar 

  4. P.B. Davies, P.M. Martineau, Adv. Mater. 4, 729 (1992)

    Article  Google Scholar 

  5. S. Naito, N. Ito, T. Hattori, T. Goto, Japan. J. Appl. Phys. 34, 302 (1995)

    Article  ADS  Google Scholar 

  6. M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, F.J. de Hoog, J. Vac. Sci. Technol. A 12, 3102 (1994)

    Article  ADS  Google Scholar 

  7. J. Röpcke, L. Mechold, M. Käning, W.Y. Fan, P.B. Davies, Plasma Chem. Plasma Process. 19, 395 (1999)

    Google Scholar 

  8. M. Haverlag, E. Stoffels, W.W. Stoffels, G.M.W. Kroesen, F.J. de Hoog, J. Vac. Sci. Technol. A 14, 384 (1996)

    Article  ADS  Google Scholar 

  9. C. Yamada, E. Hirota, J. Chem. Phys. 78, 669 (1983)

    Article  ADS  Google Scholar 

  10. S. Naito, M. Ikeda, N. Ito, T. Hattori, T. Goto, Japan. J. Appl. Phys. 32, 5721 (1993)

    Article  ADS  Google Scholar 

  11. S. Naito, N. Ito, T. Hattori, T. Goto, Japan. J. Appl. Phys. 33, 5967 (1994)

    Article  ADS  Google Scholar 

  12. M. Ikeda, N. Ito, M. Hiramatsu, M. Hori, T. Goto, J. Appl. Phys. 82, 4055 (1997)

    Article  ADS  Google Scholar 

  13. G.M.W. Kroesen, J.H.W.G. den Boer, L. Boufendi, F. Vivet, K. Khouli, A. Bouchoule, F.J. de Hoog, J. Vac. Sci. Technol. A 14, 546 (1996)

    Article  ADS  Google Scholar 

  14. C. Busch, I. Möller, H. Soltwisch, Plasma Sources Sci. Technol. 10, 250 (2001)

    Google Scholar 

  15. A. Serdioutchenko, I. Möller, H. Soltwisch, Spectrochim. Acta A 60, 3311 (2004)

    Article  Google Scholar 

  16. Z. Liu, P.B. Davies, J. Chem. Phys. 105, 3443 (1996)

    Article  ADS  Google Scholar 

  17. P.B. Davies, D.M. Smith, J. Chem. Phys. 100, 6166 (1994)

    Article  ADS  Google Scholar 

  18. J. Röpcke, L. Mechold, M. Käning, J. Anders, F.G. Wienhold, D. Nelson, M. Zahniser, Rev. Sci. Instrum. 71, 3706 (2000)

    Article  ADS  Google Scholar 

  19. J.B. McManus, D. Nelson, M. Zahniser, L. Mechold, M. Osiac, J. Röpcke, A. Rousseau, Rev. Sci. Instrum. 74, 2709 (2003)

    Article  ADS  Google Scholar 

  20. G. Lombardi, G.D. Stancu, F. Hempel, A. Gicquel, J. Röpcke, Plasma Sources Sci. Technol. 13, 27 (2004)

    Google Scholar 

  21. F. Hempel, P.B. Davies, D. Loffhagen, L. Mechold, J. Röpcke, Plasma Sources Sci. Technol. 12, S98 (2003)

  22. A. Ohl, J. Phys. IV 8, 83 (1998)

    Article  Google Scholar 

  23. K. Namjou, S. Cai, E.A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Opt. Lett. 23, 219 (1998)

    Article  ADS  Google Scholar 

  24. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  25. C. Gmachl, D.L. Sivco, R. Colombelli, F. Capasso, A.Y. Cho, Nature 415, 883 (2002)

    Article  ADS  Google Scholar 

  26. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002)

    Article  ADS  Google Scholar 

  27. F. Hempel, S. Glitsch, J. Röpcke, S. Saß, H. Zimmermann in: Plasma Polymers and Related Materials, ed. by M. Mutlu (Hacettepe University Press, Ankara, 2005), p. 142

  28. A. Cheesman, J.A. Smith, M.N.R. Ashfold, N. Langford, S. Wright, G. Duxbury, J. Phys. Chem. A 110, 2821 (2006)

    Article  Google Scholar 

  29. G.D. Stancu, N. Lang, J. Röpcke, M. Reinicke, A. Steinbach, S. Wege, Chem. Vapor Depos. 13, 351 (2007)

    Article  Google Scholar 

  30. T. Beyer, M. Braun, A. Lambrecht, J. Appl. Phys. 93, 3158 (2003)

    Article  ADS  Google Scholar 

  31. A. Rousseau, A. Dantier, L.V. Gatilova, Y. Ionikh, J. Röpcke, Y. Tolmachev, Plasma Sources Sci. Technol. 14, 70 (2005)

    Google Scholar 

  32. Y. Ionikh, A.V. Meshchanov, J. Röpcke, A. Rousseau, Chem. Phys. 322, 411 (2006)

    Article  ADS  Google Scholar 

  33. R.A.B. Zijlmans, O. Gabriel, S. Welzel, F. Hempel, J. Röpcke, R. Engeln, D.C. Schram, Plasma Sources Sci. Technol. 15, 564 (2006)

    Google Scholar 

  34. L.V. Gatilova, K. Allegraud, J. Guillon, Y.Z. Ionikh, G. Cartry, J. Röpcke, A. Rousseau, Plasma Sources Sci. Technol. 16, S107 (2007)

  35. J.H. van Helden, W. Wagemans, G. Yagci, R.A. Zijlmans, D.C. Schram, R. Engeln, G. Lombardi, G.D. Stancu, J. Röpcke, J. Appl. Phys. 101, 043305 (2007)

    Article  ADS  Google Scholar 

  36. A. Rousseau, O. Guaitella, L. Gatilova, M. Hannemann, J. Röpcke, J. Phys. D 40, 2018 (2007)

    Article  ADS  Google Scholar 

  37. S. Welzel, A. Rousseau, P.B. Davies, J. Röpcke, J. Phys.: Conf. Series 86, 012012 (2007)

    Google Scholar 

  38. E.M. van Veldhuizen (Ed.), Electrical discharges for environmental purposes Fundamentals and applications (NOVA Science Publishers, New York, 2000)

  39. B. Penetrante, Non-Thermal Plasma Techniques for Pollution Control, ed. by S. Schultheis, NATO ASI Series G 34, Parts A and B, (Springer, Berlin, 1993)

  40. T. Yamamoto, J. Electrostat. 42, 227 (1997)

    Article  Google Scholar 

  41. E. Filimonova, R. Amirov, H. Kim, I. Park, J. Phys. D Appl. Phys. 33, 1716 (2000)

    Article  ADS  Google Scholar 

  42. J. Mc Adams, J. Phys. D Appl. Phys. 34, 2810 (2001)

    Article  ADS  Google Scholar 

  43. E. Filimonova, Y.-H. Kim, S. Hong, S.-Y. Han, Y.-H. Song, Proc. 15th Int. Symp. Plasma Chem. Orléans France, 3041 (2001)

  44. L.V. Gatilova, K. Allegraud, J. Guillon, Y.Z. Ionikh, G. Cartry, J. Röpcke, A. Rousseau, Plasma Sources Sci. Technol. 16, S107 (2007)

  45. S. Welzel, L. Gatilova, J. Röpcke, A. Rousseau, Plasma Sources Sci. Technol. 16, 822 (2007)

    Google Scholar 

  46. A. Rousseau, O. Guaitella, L. Gatilova, F. Thevenet, C. Guillard, J. Röpcke, G.D. Stancu, Appl. Phys. Lett. 87, 221501 (2005)

    Article  ADS  Google Scholar 

  47. R.Q. Yang, C.J. Hill, B.H. Yang, Appl. Phys. Lett. 87, 151109 (2005)

    Article  ADS  Google Scholar 

  48. R.A.B. Zijlmans, S. Welzel, O. Gabriel, G. Yagci, J.H. van Helden, J. Röpcke, D.C. Schram, R. Engeln, J. Phys. Chem. A (2008), submitted

  49. A. Ershov, J. Borysow, J. Phys. D Appl. Phys. 28, 68 (1995)

    Article  ADS  Google Scholar 

  50. R. Sankaranarayanan, B. Pashaie, S.K. Dhali, Appl. Phys. Lett. 77, 2970 (2000)

    Article  ADS  Google Scholar 

  51. Z. Falkenstein, J. Appl. Phys. 81, 7158 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Röpcke.

Additional information

PACS

07.57.Ty; 52.70.Kz; 52.80.-s

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röpcke, J., Welzel, S., Lang, N. et al. Diagnostic studies of molecular plasmas using mid-infrared semiconductor lasers. Appl. Phys. B 92, 335–341 (2008). https://doi.org/10.1007/s00340-008-3094-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-008-3094-3

Keywords

Navigation