Skip to main content
Log in

On improved understanding of plasma-chemical processes in complex low-temperature plasmas

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Over the last years, chemical sensing using optical emission spectroscopy (OES) in the visible spectral range has been combined with methods of mid infrared laser absorption spectroscopy (MIR-LAS) in the molecular fingerprint region from 3 to 20 μm, which contains strong rotational–vibrational absorption bands of a large variety of gaseous species. This optical approach established powerful in situ diagnostic tools to study plasma-chemical processes of complex low-temperature plasmas. The methods of MIR-LAS enable to detect stable and transient molecular species in ground and excited states and to measure the concentrations and temperatures of reactive species in plasmas. Since kinetic processes are inherent to discharges ignited in molecular gases, high time resolution on sub-second timescales is frequently desired for fundamental studies as well as for process monitoring in applied research and industry. In addition to high sensitivity and good temporal resolution, the capacity for broad spectral coverage enabling multicomponent detection is further expanding the use of OES and MIR-LAS techniques. Based on selected examples, this paper reports on recent achievements in the understanding of complex low-temperature plasmas. Recently, a link with chemical modeling of the plasma has been provided, which is the ultimate objective for a better understanding of the chemical and reaction kinetic processes occurring in the plasma.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 81, 25 (2009)

    Article  ADS  Google Scholar 

  2. J. Berndt, E. Kovačević, I. Stefanović, O. Stepanović, S.H. Hong, L. Boufendi, J. Winter, Contrib. Plasma Phys. 49, 107 (2009)

    Article  ADS  Google Scholar 

  3. M. Mikikian, L. Couëdel, M. Cavarroc, Y. Tessier, L. Boufendi, Eur. Phys. J. Appl. Phys. 49, 13106 (2010)

    Article  Google Scholar 

  4. C.K. Goertz, Rev. Geophys. 27, 271 (1989)

    Article  ADS  Google Scholar 

  5. E. Kovačević, I. Stefanović, J. Berndt, Y.J. Pendleton, J. Winter, Astrophys. J. 623, 242 (2005)

    Article  ADS  Google Scholar 

  6. E. Sciamma-O’Brien, P.R. Dahoo, E. Hadamcik, N. Carrasco, E. Quirico, C. Szopa, G. Cernogora, Icarus 218, 356 (2012)

    Article  ADS  Google Scholar 

  7. N. Meyer-Vernet, I. Mann, G. Le Chat, P. Schippers, S. Belheouane, K. Issautier, A. Lecacheux, M. Maksimovic, F. Pantellini, A. Zaslavsky, Plasma Phys. Control. Fusion 57, 014015 (2015)

    Article  ADS  Google Scholar 

  8. J. Winter, Plasma Phys. Control. Fusion 46, B583 (2004)

    Article  Google Scholar 

  9. C. Arnas, C. Martin, P. Roubin, B. Pégourié, G. De Temmerman, K. Hassouni, A. Michau, G. Lombardi, X. Bonnin, Plasma Phys. Control. Fusion 52, 124007 (2010)

    Article  ADS  Google Scholar 

  10. S.I. Krasheninnikov, R.D. Smirnov, D.L. Rudakov, Plasma Phys. Control. Fusion 53, 083001 (2011)

    Article  ADS  Google Scholar 

  11. R.M. Roth, K.G. Spears, G.D. Stein, G. Wong, Appl. Phys. Lett. 46, 253 (1985)

    Article  ADS  Google Scholar 

  12. U. Kortshagen, Plasma Chem. Plasma Process. 36, 73 (2016)

    Article  Google Scholar 

  13. M. Mikikian, S. Labidi, E. von Wahl, J.F. Lagrange, T. Lecas, V. Massereau-Guilbaud, I. Géraud-Grenier, E. Kovacevic, J. Berndt, H. Kersten et al., Plasma Phys. Control. Fusion 59, 014034 (2017)

    Article  ADS  Google Scholar 

  14. I. Stefanović, B. Sikimić, A. Aschinger, J. Berndt, E. Kovačević, J. Winter, J. Phys. D: Appl. Phys. 48, 385202 (2015)

    Article  Google Scholar 

  15. G. Praburam, J. Goree, Phys. Plasmas 3, 1212 (1996)

    Article  ADS  Google Scholar 

  16. J. Dorier, C. Hollenstein, A.A. Howling, J. Vac. Sci. Technol. A 13, 918 (1995)

    Article  ADS  Google Scholar 

  17. J. Goree, G.E. Morfill, V.N. Tsytovich, S.V. Vladimirov, Phys. Rev. E 59, 7055 (1999)

    Article  ADS  Google Scholar 

  18. M. Mikikian, L. Boufendi, A. Bouchoule, H.M. Thomas, G.E. Morfill, A.P. Nefedov, V.E. Fortov, the PKE-Nefedov Team, New J. Phys. 5, 19 (2003)

    Article  ADS  Google Scholar 

  19. M. Wolter, A. Melzer, O. Arp, M. Klindworth, A. Piel, Phys. Plasmas 14, 123707 (2007)

    Article  ADS  Google Scholar 

  20. M. Cavarroc, M. Mikikian, Y. Tessier, L. Boufendi, Phys. Rev. Lett. 100, 045001 (2008)

    Article  ADS  Google Scholar 

  21. B. Tadsen, F. Greiner, A. Piel, Phys. Plasmas 21, 103704 (2014)

    Article  ADS  Google Scholar 

  22. F.M.J.H. van de Wetering, R.J.C. Brooimans, S. Nijdam, J. Beckers, G.M.W. Kroesen, J. Phys. D: Appl. Phys. 48, 035204 (2015)

    Article  ADS  Google Scholar 

  23. Y. Qin, N. Bilik, U.R. Kortshagen, E.S. Aydil, J. Phys. D: Appl.Phys. 49, 085203 (2016)

    Article  ADS  Google Scholar 

  24. D. Samsonov, J. Goree, Phys. Rev. E 59, 1047 (1999)

    Article  ADS  Google Scholar 

  25. D. Samsonov, J. Goree, IEEE Trans. Plasma Sci. 27, 76 (1999)

    Article  ADS  Google Scholar 

  26. K. Bhattacharya, D. Das, Nanotechnology 18, 415704 (2007)

    Article  ADS  Google Scholar 

  27. M. Hähnel, V. Brüser, H. Kersten, Plasma Process. Polym. 4, 629 (2007)

    Article  Google Scholar 

  28. S. Bornholdt, M. Wolter, H. Kersten, Eur. Phys. J. D 60, 653 (2010)

    Article  ADS  Google Scholar 

  29. H. Kersten, G. Thieme, M. Fröhlich, D. Bojic, D.H. Tung, M. Quaas, H. Wulff, R. Hippler, Pure Appl. Chem. 77, 415 (2005)

    Article  Google Scholar 

  30. S. Blittersdorf, N. Bahlawane, K. Kohse-Höinghaus, B. Atakan, J. Müller, Chem. Vap. Depos. 9, 194 (2003)

    Article  Google Scholar 

  31. H. Kersten, R. Wiese, G. Thieme, M. Fröhlich, A. Kopitov, D. Bojic, F. Scholze, H. Neumann, M. Quaas, H. Wulff et al., New J. Phys. 5, 93 (2003)

    Article  ADS  Google Scholar 

  32. D. Lopatik, S. Niemietz, M. Fröhlich, J. Röpcke, H. Kersten, Contrib. Plasma Phys. 52, 864 (2012)

    Article  ADS  Google Scholar 

  33. M. Hübner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, J. Röpcke, Rev. Sci. Instrum. 82, 093102 (2011)

    Article  ADS  Google Scholar 

  34. J. Röpcke, P.B. Davies, N. Lang, A. Rousseau, S. Welzel, J. Phys. D: Appl. Phys. 45, 423001 (2012)

    Article  Google Scholar 

  35. M. Hübner, S. Gortschakow, O. Guaitella, D. Marinov, A. Rousseau, J. Röpcke, D. Loffhagen, Plasma Sources Sci. Technol. 25, 035005 (2016)

    Article  ADS  Google Scholar 

  36. C.D. Pintassilgo, V. Guerra, O. Guaitella, A. Rousseau, Plasma Sources Sci. Technol. 19, 055001 (2010)

    Article  ADS  Google Scholar 

  37. A.S.C. Nave, B. Baudrillart, S. Hamann, F. Bénédic, G. Lombardi, A. Gicquel, J.H. van Helden, J. Röpcke, Plasma Sources Sci. Technol. 25, 065002 (2016)

    Article  ADS  Google Scholar 

  38. J. Röpcke, L. Mechold, M. Käning, J. Anders, F.G. Wienhold, D. Nelson, M. Zahniser, Rev. Sci. Instrum. 71, 3706 (2000)

    Article  ADS  Google Scholar 

  39. A.S.C. Nave, B. Baudrillart, S. Hamann, F. Bénédic, G. Lombardi, A. Gicquel, J.H. van Helden, J. Röpcke, Plasma Sources Sci. Technol. 25, 065003 (2016)

    Article  ADS  Google Scholar 

  40. A.M. Wróbel, M.R. Wertheimer, in Plasma Deposition, Treatment, and Etching of Polymers, edited by R. d’Agostino (Academic Press, San Diego, 1990), Vol. 163, p. 268

  41. D. Merche, N. Vandencasteele, F. Reniers, Thin Solid Films 520, 4219 (2012)

    Article  ADS  Google Scholar 

  42. A.S.C. Nave, F. Mitschker, P. Awakowicz, J. Röpcke, J. Phys. D: Appl. Phys. 49, 395206 (2016)

    Article  Google Scholar 

  43. S. Steves, T. Styrnoll, F. Mitschker, S. Bienholz, N. Bibinov, P. Awakowicz, J. Phys. D: Appl. Phys. 46, 445201 (2013)

    Article  Google Scholar 

  44. M. Deilmann, H. Halfmann, S. Steves, N. Bibinov, P. Awakowicz, Plasma Process. Polym. 6, S695 (2009)

    Article  Google Scholar 

  45. W. Petasch, E. Räuchle, J. Weichart, H. Bickmann, Surf. Coat. Technol. 74, 200 (1995)

    Article  Google Scholar 

  46. B. Denis, S. Steves, E. Semmler, N. Bibinov, W. Novak, P. Awakowicz, Plasma Process. Polym. 9, 619 (2012)

    Article  Google Scholar 

  47. F. Hempel, P.B. Davies, D. Loffhagen, L. Mechold, J. Röpcke, Plasma Sources Sci. Technol. 12, S98 (2003)

    Article  ADS  Google Scholar 

  48. J. Warnatz, in Combustion Chemistry, edited by W.C. Gardiner (Springer US, New York, NY, 1984), p. 197

  49. D.L. Baulch, C.J. Cobos, R.A. Cox, C. Esser, P. Frank, T. Just, J.A. Kerr, M.J. Pilling, J. Troe, R.W. Walker et al., J. Phys. Chem. Ref. Data 21, 411 (1992)

    Article  ADS  Google Scholar 

  50. D.L. Baulch, J. Duxbury, S.J. Grant, D.C. Montague, J. Phys. Chem. Ref. Data 10, 1 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Röpcke.

Additional information

Contribution to the Topical Issue “Fundamentals of Complex Plasmas”, edited by Jürgen Meichsner, Michael Bonitz, Holger Fehske, Alexander Piel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röpcke, J., Loffhagen, D., von Wahl, E. et al. On improved understanding of plasma-chemical processes in complex low-temperature plasmas. Eur. Phys. J. D 72, 87 (2018). https://doi.org/10.1140/epjd/e2017-80363-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-80363-7

Navigation