Skip to main content
Log in

Narrow linewidth light source for an ultraviolet optical frequency standard

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report an ultra-narrow linewidth light source applicable for a frequency standard in the ultraviolet. The laser is a Nd:YAG laser that emits at 946 nm with 300-mW output power. It is locked to a high-finesse cavity. The minimum Allan deviation is 1.3×10-14 for an integration time of 1 s, which corresponds to a laser linewidth of 2.8 Hz. The cavity drift is measured by a frequency comb and a single-ion spectrum for different time scales. In order to investigate broadening mechanisms due to the fiber transport and doubling systems, the laser light is frequency doubled with two independent systems and compared. The measured minimum beat-note between the two laser fields is less than 1 Hz. By carrying out a high-resolution scan on a trapped single indium ion, we observe a linewidth of 260 Hz on the ion clock transition. Possible reasons for the broadening effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, Nature 435, 321 (2005)

    Article  ADS  Google Scholar 

  2. C.F. Roos, M. Chwalla, K. Kim, M. Riebe, R. Blatt, Nature 443, 316 (2006)

    Article  ADS  Google Scholar 

  3. P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Science 309, 749 (2005)

    Article  ADS  Google Scholar 

  4. W.H. Oskay, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 94, 163001 (2005)

    Article  ADS  Google Scholar 

  5. P. Dubé, A.A. Madej, J.E. Bernard, L. Marmet, J.-S. Boulanger, S. Cundy, Phys. Rev. Lett. 95, 033001 (2005)

    Article  ADS  Google Scholar 

  6. G.P. Barwood, H.S. Margolis, G. Huang, P. Gill, H.A. Klein, Phys. Rev. Lett. 93, 133001 (2004)

    Article  ADS  Google Scholar 

  7. I. Courtillot, A. Quessada, R.P. Kovacich, A. Brusch, D. Kolker, J.J. Zondy, G.D. Rovera, P. Lemonde, Phys. Rev. A 68, 030501(R) (2003)

  8. A.D. Ludlow, M.M. Boyd, T. Zelevinsky, S.M. Foreman, S. Blatt, M. Notcutt, T. Ido, J. Ye, Phys. Rev. Lett. 96, 033003 (2006)

    Article  ADS  Google Scholar 

  9. C.W. Hoyt, Z.W. Barber, C.W. Oates, T.M. Fortier, S.A. Diddams, L. Hollberg, Phys. Rev. Lett. 95, 083003 (2005)

    Article  ADS  Google Scholar 

  10. T. Hong, C. Cramer, E. Cook, W. Nagourney, E.N. Fortson, Opt. Lett. 30, 2644 (2005)

    Article  ADS  Google Scholar 

  11. R.J. Rafac, B.C. Young, J.A. Beall, W.M. Itano, D.J. Wineland, J.C. Bergquist, Phys. Rev. Lett. 85, 2462 (2000)

    Article  ADS  Google Scholar 

  12. N. Yu, X. Zhao, H. Dehmelt, W. Nagourney, Phys. Rev. A 50, 2738 (1994)

    Article  ADS  Google Scholar 

  13. Th. Becker, J. von Zanthier, A.Y. Nevsky, C. Schwedes, M.N. Skvortsov, H. Walther, E. Peik, Phys. Rev. A 63, 051802 (2001)

    Article  ADS  Google Scholar 

  14. J.E. Bernard, A.A. Madej, L. Marmet, B.G. Whitford, K.J. Siemsen, S. Cundy, Phys. Rev. Lett. 82, 3228 (1999)

    Article  ADS  Google Scholar 

  15. C. Tamm, D. Engelke, V. Bühner, Phys. Rev. A 61, 053405 (2000)

    Article  ADS  Google Scholar 

  16. G.P. Barwood, G. Huang, H.A. Klein, P. Gill, R.B.M. Clarke, Phys. Rev. A 59, R3178 (1999)

    Article  ADS  Google Scholar 

  17. G.P. Barwood, G. Huang, H.A. Klein, S.N. Lea, K. Szymaniec, G. Gill, Science 306, 1355 (2004)

    Article  ADS  Google Scholar 

  18. H.C. Nägerl, C. Roos, D. Leibfried, H. Rohde, G. Thalhammer, J. Eschner, F. Schmidt-Kaler, R. Blatt, Phys. Rev. A 61, 023405 (2000)

    Article  ADS  Google Scholar 

  19. M. Roberts, P. Taylor, S.V. Gateva-Kostova, R.B.M. Clarke, W.R.C. Rowley, P. Gill, Phys. Rev. A 60, 2867 (1999)

    Article  ADS  Google Scholar 

  20. S.A. Webster, P. Taylor, M. Roberts, G.P. Barwood, P. Gill, Phys. Rev. A 65, 052501 (2002)

    Article  ADS  Google Scholar 

  21. H. Dehmelt, IEEE Trans. Instrum. Meas. 31, 83 (1982)

    ADS  Google Scholar 

  22. E. Peik, J. Abel, Th. Becker, J. von Zanthier, H. Walther, Phys. Rev. A 60, 439 (1999)

    Article  ADS  Google Scholar 

  23. G. Hollemann, E. Peik, A. Rusch, H. Walther, Opt. Lett. 20, 1871 (1995)

    ADS  Google Scholar 

  24. A.Y. Nevsky, M. Eichenseer, J. von Zanthier, H. Walther, Opt. Commun. 210, 91 (2002)

    Article  ADS  Google Scholar 

  25. M. Eichenseer, A.Y. Nevsky, C. Schwedes, J. von Zanthier, H. Walther, J. Phys. B 36, 553 (2003)

    Article  ADS  Google Scholar 

  26. M. Eichenseer, J. von Zanthier, H. Walther, Opt. Lett. 30, 1662 (2005)

    Article  ADS  Google Scholar 

  27. A. Wolf, B. Bodermann, H.R. Telle, Opt. Lett. 25, 1098 (2000)

    ADS  Google Scholar 

  28. B.C. Young, F.C. Cruz, W.M. Itano, J.C. Bergquist, Phys. Rev. Lett. 82, 3799 (1999)

    Article  ADS  Google Scholar 

  29. S.A. Webster, M. Oxborrow, P. Gill, Opt. Lett. 29, 1497 (2004)

    Article  ADS  Google Scholar 

  30. M. Notcutt, L.S. Ma, J. Ye, J.L. Hall, Opt. Lett. 30, 1815 (2005)

    Article  ADS  Google Scholar 

  31. H. Stoehr, F. Mensing, J. Helmcke, U. Sterr, Opt. Lett. 31, 736 (2006)

    Article  ADS  Google Scholar 

  32. I. Freitag, R. Henking, A. Tünnermann, H. Welling, Opt. Lett. 20, 2499 (1995)

    ADS  Google Scholar 

  33. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Article  ADS  Google Scholar 

  34. C. Salomon, D. Hils, J.L. Hall, J. Opt. Soc. Am. B 5, 1576 (1988)

    ADS  Google Scholar 

  35. T.W. Hänsch, B. Couillaud, Opt. Commun. 35, 441 (1980)

    Article  ADS  Google Scholar 

  36. L.-S. Ma, P. Jungner, J. Ye, J.L. Hall, Opt. Lett. 19, 1777 (1994)

    Article  ADS  Google Scholar 

  37. J.C. Bergquist, W.M. Itano, D.J. Wineland, Phys. Rev. A 36, 428 (1987)

    Article  ADS  Google Scholar 

  38. J. Reichert, R. Holzwarth, T. Udem, T.W. Hänsch, Opt. Commun. 172, 59 (1999)

    Article  ADS  Google Scholar 

  39. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R. Holzwarth, T. Udem, T.W. Hänsch, Phys. Rev. Lett. 84, 5102 (2000)

    Article  ADS  Google Scholar 

  40. J. von Zanthier, Th. Becker, M. Eichenseer, A.Y. Nevsky, C. Schwedes, E. Peik, H. Walther, R. Holzwarth, J. Reichert, T. Udem, T.W. Hänsch, P.V. Pokasov, M.N. Skvortsov, S.N. Bagayev, Opt. Lett. 25, 1729 (2000)

    ADS  Google Scholar 

  41. Y.H. Wang, T. Liu, A. Stejskal, Y.N. Zhao, J. Zhang, Z.H. Lu, R. Dumke, L.J. Wang, Th. Becker, H. Walther, in Proc. IEEE Frequency Control Symp., Miami, FL (2006), p. 415

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.J. Wang.

Additional information

PACS

42.55.Xi; 42.62.Eh; 42.65.Ky

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Wang, Y., Dumke, R. et al. Narrow linewidth light source for an ultraviolet optical frequency standard. Appl. Phys. B 87, 227–232 (2007). https://doi.org/10.1007/s00340-007-2599-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-007-2599-5

Keywords

Navigation