Skip to main content
Log in

Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A simple, economic diode laser based cavity ringdown system for trace-gas applications in the petrochemical industry is presented. As acetylene (C2H2) is sometimes present as an interfering contaminant in the gas flow of ethylene (ethene, C2H4) in a polyethylene production process, an on-line monitoring of such traces is essential. We investigated C2H2–C2H4 mixtures in a gas-flow configuration in real time. The experimental setup consists of a near-infrared external cavity diode laser with an output power of a few mW, standard telecommunication fibers and a home-made gas cell providing a user-friendly cavity alignment. A noise-equivalent detection sensitivity of 4.5×10-8 cm-1 Hz-1/2 was achieved, corresponding to a detection limit of 20 ppbV C2H2 in synthetic air at 100 mbar. In an actual C2H2–C2H4 gas-flow measurement the minimum detectable concentration of C2H2 added to the C2H4 gas stream (which may already contain an unknown C2H2 contamination) increased to 160 ppbV. Moreover, stepwise C2H2 concentration increments of 500 ppbV were resolved with a 1-min time resolution and an excellent linear relationship between the absorption coefficient and the concentration was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Braendle (ABB Corporate Research), private communication

  2. K.W. Busch, M.A. Busch, in Cavity Ringdown Spectroscopy (ACS Symp. Ser. 720), ed. by K.W. Busch, M.A. Busch (American Chemical Society, Washington, DC, 1999), pp. 7–19

  3. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  4. R.T. Jongma, M.G.H. Boogaarts, J. Holleman, G. Meijer, Rev. Sci. Instrum. 86, 2821 (1995)

    Article  ADS  Google Scholar 

  5. J.J. Scherer, D. Voelkel, D.J. Rakestraw, J.B. Paul, C.P. Collier, R.J. Saykally, A. O’Keefe, Chem. Phys. Lett. 245, 2730 (1995)

    Article  Google Scholar 

  6. P. Zalicki, R.N. Zare, J. Chem. Phys. 102, 2708 (1995)

    Article  ADS  Google Scholar 

  7. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  ADS  Google Scholar 

  8. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270, 538 (1997)

    Article  ADS  Google Scholar 

  9. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998)

    Article  Google Scholar 

  10. Y. He, M. Hippler, M. Quack, Chem. Phys. Lett. 289, 527 (1998)

    Article  ADS  Google Scholar 

  11. Y. He, B.J. Orr, Chem. Phys. Lett. 319, 131 (2000)

    Article  ADS  Google Scholar 

  12. B.A. Paldus, C.C. Harb, T.G. Spence, R.N. Zare, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, Opt. Lett. 25, 666 (2000)

    Article  ADS  Google Scholar 

  13. Y. He, B.J. Orr, Appl. Phys. B 75, 267 (2002)

    Article  ADS  Google Scholar 

  14. F.V. Englich, Y. He, B.J. Orr, Appl. Phys. B 83, 1 (2006)

    Article  ADS  Google Scholar 

  15. J.T. Hodges, H.P. Layer, W.W. Miller, G.E. Scace, Rev. Sci. Instrum. 75, 849 (2004)

    Article  ADS  Google Scholar 

  16. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  17. G. von Basum, D. Halmer, P. Hering, M. Mürtz, S. Schiller, F. Müller, A. Popp, F. Kühnemann, Opt. Lett. 29, 797 (2004)

    Article  ADS  Google Scholar 

  18. M. Mürtz, D. Klein, S. Stry, H. Dahnke, P. Hering, J. Lauterbach, K. Kleinermanns, W. Urban, H. Ehlers, D. Ristau, Environ. Sci. Pollut. Res. 4, 61 (2002)

    Google Scholar 

  19. I.B.C. Matheson, Anal. Instrum. 16, 3345 (1987)

    Article  Google Scholar 

  20. D. Halmer, G. von Basum, P. Hering, M. Mürtz, Rev. Sci. Instrum. 75, 2187 (2004)

    Article  ADS  Google Scholar 

  21. S.L. Gilbert, W.C. Swann, NIST Publ. 260-133 (2001)

  22. C. Hornberger, M. König, S.B. Rai, W. Demtröder, Chem. Phys. 190, 171 (1995)

    Article  Google Scholar 

  23. A.R. Awtry, J.H. Miller, Appl. Phys. B 75, 255 (2002)

    Article  ADS  Google Scholar 

  24. J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. B 78, 465 (2004)

    Article  ADS  Google Scholar 

  25. M.E. Webber, M. Pushkarsky, C.K.N. Patel, Appl. Opt. 42, 2119 (2003)

    Article  ADS  Google Scholar 

  26. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105-1 (2005)

    Article  ADS  Google Scholar 

  27. M. Scotoni, A. Rossi, D. Bassi, R. Buffa, S. Iannotta, A. Boschetti, Appl. Phys. B 82, 495 (2006)

    Article  ADS  Google Scholar 

  28. T. Laurila, H. Cattaneo, T. Pöyhönen, V. Koskinen, J. Kauppinen, R. Hernberg, Appl. Phys. B 83, 285 (2006)

    Article  ADS  Google Scholar 

  29. T. Laurila, H. Cattaneo, T. Pöyhönen, V. Koskinen, J. Kauppinen, R. Hernberg, Appl. Phys. B 83, 669 (2006)

    Article  ADS  Google Scholar 

  30. D.S. Baer, J.B. Paul, M. Gupta, A. O’Keefe, Appl. Phys. B 75, 261 (2002)

    Article  ADS  Google Scholar 

  31. E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanov, B.A. Paldus, T.G. Spence, R.N. Zare, Anal. Chem. 74, 2003 (2002)

    Article  Google Scholar 

  32. J. Ye, L.-S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)

    Article  ADS  Google Scholar 

  33. L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Macki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  34. R. El Hachtouki, J. Vander Auwera, J. Mol. Spectrosc. 216, 355 (2002)

    Article  ADS  Google Scholar 

  35. G. Rusciano, G. Pesce, F. Pignatiello, A. Sasso, Opt. Express 11, 3010 (2003)

    Article  ADS  Google Scholar 

  36. Y. He, B.J. Orr, Appl. Phys. B (2006) (this special issue) DOI: 10.1007/00340-006-2371-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.W. Sigrist.

Additional information

PACS

07.07.Df; 42.62.Fi; 82.80.Gk

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vogler, D., Sigrist, M. Near-infrared laser based cavity ringdown spectroscopy for applications in petrochemical industry. Appl. Phys. B 85, 349–354 (2006). https://doi.org/10.1007/s00340-006-2313-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2313-z

Keywords

Navigation