Skip to main content
Log in

Integrated cavity output spectroscopy by using a sub-centimeter short optical cavity combined with a free-running Fabry–Perot diode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In integrated cavity output spectroscopy (ICOS), a long optical cavity is often required for suppressing mode structure, which, however, blocks its application for fabricating compact gas sensors requiring gas cells with the volume at milliliter level or less. In this paper, we demonstrate that low-cost free-running Fabry–Perot diode lasers have intrinsic capability for promoting suppression of cavity resonance due to the broad linewidth. The ICOS is performed, for the first time to our best knowledge, by using a short cavity of less than 1 cm with a cavity volume of only 4.7 cm3. By introduction of the scheme of correlation spectroscopy, the problem of laser mode competitions is resolved. A minimum detectable absorption of 8.7 × 10−5 Hz−1/2 (noise-equivalent absorption sensitivity of 3.3 × 10−7 cm−1 Hz−1/2) is achieved. The performance is suitable for applications in which both high sensitivity and small gas cell volume are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Hodgkinson, R.P. Tatam, Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013)

    Article  ADS  Google Scholar 

  2. J.S. Li, B.L. Yu, W.X. Zhao, W.D. Chen, A review of signal enhancement and noise reduction techniques for tunable diode laser absorption spectroscopy. Appl. Spectrosc. Rev. 49, 666–691 (2014)

    Article  ADS  Google Scholar 

  3. J.B. Mcmanus, P.L. Kebabian, W.S. Zahniser, Astigmatic mirror multipass absorption cells for long-path-length spectroscopy. Appl. Opt. 34, 3336–3348 (1995)

    Article  ADS  Google Scholar 

  4. B. Tuzson, M. Mangold, H. Looser, A. Manninen, L. Emmenegger, Compact multipass optical cell for laser spectroscopy. Opt. Lett. 38, 257–259 (2013)

    Article  ADS  Google Scholar 

  5. A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988)

    Article  ADS  Google Scholar 

  6. G. Berden, R. Peeters, G. Meijer, Cavity ring-down spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chem. 19, 565–607 (2000)

    Article  Google Scholar 

  7. E. Hawe, P. Chambers, C. Fitzpatrick, E. Lewis, CO2 monitoring and detection using an integrating sphere as a multipass absorption cell. Meas. Sci. Technol. 18, 3187–3194 (2007)

    Article  ADS  Google Scholar 

  8. D. Masiyano, J. Hodgkinson, R.P. Tatam, Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 2: integrating spheres. Appl. Phys. B 100, 303–312 (2010)

    Article  ADS  Google Scholar 

  9. M. Sjöholm, G. Somesfalean, J. Alnis, S. Andersson-Engels, S. Svanberg, Analysis of gas dispersed in scattering media. Opt. Lett. 26, 16–18 (2001)

    Article  ADS  Google Scholar 

  10. T. Svensson, E. Adolfsson, M. Lewander, C.T. Xu, S. Svanberg, Disordered, strongly scattering porous materials as miniature multipass gas cells. Phys. Rev. Lett. 107, 143901 (2011)

    Article  ADS  Google Scholar 

  11. C. Stowasser, A.D. Farinas, J. Ware, D.W. Wistisen, C. Rella, E. Wahl, E. Crosson, T. Blunier, A low-volume cavity ring-down spectrometer for sample-limited applications. Appl. Phys. B 116, 255–270 (2014)

    Article  ADS  Google Scholar 

  12. T. Gulluk, H.E. Wagner, F. Slemr, A high-frequency modulated tunable diode laser absorption spectrometer for measurements of CO2, CH4, N2O, and CO in air samples of a few cm3. Rev. Sci. Instrum. 68, 230–239 (1997)

    Article  ADS  Google Scholar 

  13. J. Hodgkinson, R. Smith, W.O. Ho, J.R. Saffell, R.P. Tatam, Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 μm in a compact and optically efficient sensor. Sens. Actuators B 186, 580–588 (2013)

    Article  Google Scholar 

  14. A. O’Keefe, J.J. Scherer, J.B. Paul, CW integrated cavity output spectroscopy. Chem. Phys. Lett. 307, 343–349 (1999)

    Article  ADS  Google Scholar 

  15. R. Engeln, G. Berden, R. Peeters, G. Meijer, Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy. Rev. Sci. Instrum. 69, 3763–3769 (1998)

    Article  ADS  Google Scholar 

  16. J.B. Paul, L. Lapson, J.G. Anderson, Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment. Appl. Opt. 40, 4904–4910 (2001)

    Article  ADS  Google Scholar 

  17. Y.A. Bakhirkin, A.A. Kosterev, C. Roller, R.F. Curl, F.K. Tittel, Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. Appl. Opt. 43, 2257–2266 (2004)

    Article  ADS  Google Scholar 

  18. L. Ciaffoni, J. Couper, G. Hancock, R. Peverall, P.A. Robbins, G.A.D. Ritchie, RF noise induced laser perturbation for improving the performance of non-resonant cavity enhanced absorption spectroscopy. Opt. Express 22, 17030–17038 (2014)

    Article  ADS  Google Scholar 

  19. K.M. Manfred, J.M.R. Kirkbride, L. Ciaffoni, R. Peverall, G.A.D. Ritchie, Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation. Opt. Lett. 39, 6811–6814 (2014)

    Article  ADS  Google Scholar 

  20. Y. Arita, P. Ewart, Multi-mode absorption spectroscopy. Opt. Commun. 281, 2561–2566 (2008)

    Article  ADS  Google Scholar 

  21. M.L. Hamilton, G.A.D. Ritchie, Y. Arita, P. Ewart, Multi-mode absorption spectroscopy, MUMAS, using wavelength modulation and cavity enhancement techniques. Appl. Phys. B 100, 665–673 (2010)

    Article  ADS  Google Scholar 

  22. C. Dyroff, Optimum signal-to-noise ratio in off-axis integrated cavity output spectroscopy. Opt. Lett. 36, 1110–1112 (2011)

    Article  ADS  Google Scholar 

  23. X.T. Lou, G. Somesfalean, Z.G. Zhang, Gas detection by correlation spectroscopy employing a multimode diode laser. Appl. Opt. 47, 2392–2398 (2008)

    Article  ADS  Google Scholar 

  24. X.T. Lou, G. Somesfalean, S. Svanberg, Z.G. Zhang, S.H. Wu, Detection of elemental mercury by multimode diode laser correlation spectroscopy. Opt. Express 20, 4927–4938 (2012)

    Article  ADS  Google Scholar 

  25. P. Malara, M.F. Witinski, F. Capasso, J.G. Anderson, P. De Natale, Sensitivity enhancement of off-axis ICOS using wavelength modulation. Appl. Phys. B 108, 353–359 (2012)

    Article  ADS  Google Scholar 

  26. V.L. Kasyutich, C.E. Canosa-Mas, C. Pfrang, S. Vaughan, R.P. Wayne, Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers. Appl. Phys. B 75, 755–761 (2002)

    Article  ADS  Google Scholar 

  27. W. Zhao, X. Gao, W. Chen, W. Zhang, T. Huang, T. Wu, H. Cha, Wavelength modulated off-axis integrated cavity output spectroscopy in the near infrared. Appl. Phys. B 86, 353–359 (2007)

    Article  ADS  Google Scholar 

  28. G. Somesfalean, M. Sjoholm, L. Persson, H. Gao, T. Svensson, S. Svanberg, Temporal correlation scheme for spectroscopic gas analysis using multimode diode lasers. Appl. Phys. Lett. 86, 184102 (2005)

    Article  ADS  Google Scholar 

  29. J. Hodgkinson, D. Masiyano, R.P. Tatam, Using integrating spheres with wavelength modulation spectroscopy: effect of pathlength distribution on 2nd harmonic signals. Appl. Phys. B 110, 223–231 (2013)

    Article  ADS  Google Scholar 

  30. E.J. Moyer, D.S. Sayres, G.S. Engel, J.M.S. Clair, F.N. Keutsch, N.T. Allen, J.H. Kroll, J.G. Anderson, Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy. Appl. Phys. B 92, 467–474 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (NSFC) (Grant 61008027) and the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province (LBH-Q14069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiutao Lou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, X., Dong, Y., Wu, D. et al. Integrated cavity output spectroscopy by using a sub-centimeter short optical cavity combined with a free-running Fabry–Perot diode laser. Appl. Phys. B 121, 171–178 (2015). https://doi.org/10.1007/s00340-015-6214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6214-x

Keywords

Navigation