Skip to main content
Log in

Thermodynamic, electronic, magnetic, thermoelectric, and optical properties of full Heuslers compounds Co2TiAl(Ga, In): A First principles study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we investigated the thermodynamic, band structure, density of states, magnetic, thermoelectric and optical properties of Co2TiAl, Co2TiGa, and Co2TiIn full Heuslers in the L21 phase via the full-potential linearized augmented plane wave (FP-LAPW) method. The results reveal that the system is more stable in the ferromagnetic state. The calculated elastic constants exhibit that these matters satisfy the criteria stability. The integer magnetic moment confirms the half-metallic behavior of Co2TiAl and Co2TiGa systems through GGA + U calculation. The optical properties of the bulk structures have confirmed its semiconducting behavior and its main optical response occurred in the infrared (IR) and visible ranges and the very low loss in the same region with existence absorption of these compounds, make them as suitable for optoelectronic applications. Further, the thermoelectric analysis has been carried out to survey the potential of these alloys for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. E. Bayar, N. Kervan, S. Kervan, Half-metallic ferrimagnetism in the Ti2CoAl Heusler compound. J. Magn. Magn. Mater 323, 2945 (2011)

    ADS  Google Scholar 

  2. C.G.F. Blum, S. Ouardi, G.H. Fecher, B. Balke, X. Kozina, G. Stryganyuk, S. Ueda, K. Kobayashi, C. Felser, S. Wurmehl et al., Exploring the details of the martensite–austenite phase transition of the shape memory Heusler compound Mn2NiGa by hard X-ray photoelectron spectroscopy, magnetic and transport measurements. Appl. Phys. Lett. 98, 252501 (2011)

    ADS  Google Scholar 

  3. T. Saito, N. Tezuka, M. Matsuura, S. Sugimoto, Spin injection, transport, and detection at room temperature in a lateral spin transport device with Co2FeAl0.5Si0.5/nGaAs Schottky tunnel junctions. Appl. Phys. Express 6(10), 103006 (2013)

    ADS  Google Scholar 

  4. R. Fetzer, M. Aeschlimann, M. Cinchetti, Spin-resolved photoemission spectroscopy of the Heusler compound Co2MnSi. In: Felser, C., Hirohata, A. (eds) Heusler Alloys. Springer Series in Materials Science, Springer, Cham, 222. (2016). ISBN 978-3-319-21449-8

  5. T. Paramanik, I. Das, Near room temperature giant magnetocaloric effect and giant negative magnetoresistance in Co, Ga substituted Ni–Mn–In Heusler alloy. J. Alloy. Compd. 654, 399–403 (2016)

    Google Scholar 

  6. M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988)

    ADS  Google Scholar 

  7. A. Planes, L. Manosa, M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21, 233201 (2009)

    ADS  Google Scholar 

  8. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50(25), 2024–2027 (1983)

    ADS  Google Scholar 

  9. M.A. Sattar, S.A. Ahmad, F. Hussain, C. Cazorla, First-principles prediction of magnetically ordered half-metals above room temperature. J. Materiomics 5(3), 404–412 (2019)

    Google Scholar 

  10. J. Ma, L. Feng, R. Guo, Y. Liao, R. Khenata, G. Liu, L. Wang, New half-metallic materials: FeRuCrP and FeRhCrP quaternary Heusler compounds. Mater. Basel Switz. 10(12), 1367 (2017)

    ADS  Google Scholar 

  11. X.T. Wang, T.T. Lin, H. Rozale, X.F. Dai, G.D. Liu, Robust half-metallic properties in inverse Heusler alloys composed of 4d transition metal elements: Zr2RhZ (Z= Al, Ga, In). J. Magn. Magn. Mater. 402, 190–195 (2016)

    ADS  Google Scholar 

  12. S. Rauf, S. Arif, M. Haneef, B. Amin, The first principle study of magnetic properties of Mn2WSn, Fe2YSn (Y= Ti, V), Co2YSn (Y= Ti, Zr, Hf, V, Mn) and Ni2YSn (Y= Ti, Zr, Hf, V, Mn) Heusler alloys. J. Phys. Chem. Solids 76, 153–169 (2015)

    ADS  Google Scholar 

  13. K.H.J. Buschow, Handbook of Magnetic Materials (Elsevier Science, Amsterdam, 2013)

    Google Scholar 

  14. A. Birsan, P. Palade, Band structure calculations of Ti2FeSn: a new halfmetallic compound. Intermetallics 36, 86–89 (2013)

    Google Scholar 

  15. M. Pugaczowa-Michalska, A. Jezierski, The magnetic properties of Rh2TMSn Heusler alloys (TM = Mn, Fe Co, Ni and Cu). Phys. B 253, 163 (1998)

    ADS  Google Scholar 

  16. F. Albertini, S. Besseghini, A. Paoluzi, L. Pareti, M. Pasquale, F. Passaretti, C.P. Sassod, A. Stanteroc Villab, Structural, magnetic and anisotropic properties of Ni2MnGa melt-spun ribbons. J. Magn. Magn. Mater. 242, 1421 (2002)

    ADS  Google Scholar 

  17. A.W. Carbonari, R.N. Saxena, W. Pendl, J. Mestnik Filho, R.N. Attili, M. Olzon-Dionysio, S.D. de Souza, Magnetic hyperfine field in the Heusler alloys Co2YZ (Y = V, Nb, Ta, Cr; Z = Al, Ga). J. Magn. Magn. Mater. 163, 313 (1996)

    ADS  Google Scholar 

  18. T. Graf, S.S.P. Parkin, C. Felser, Heusler compounds—a material class with exceptional properties. IEEE Trans. Magn. 47(2), 367–373 (2011)

    ADS  Google Scholar 

  19. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Effect of L21 and XA ordering on structural, martensitic, electronic, magnetic, elastic, thermal and thermoelectric properties of Co2FeGe Heusler alloys. Solid State Commun. 355, 114932 (2022)

    Google Scholar 

  20. M.Y. Raïâ, R. Masrour, A. Jabar, A. Rezzouk, M. Hamedoun, A. Hourmatallah, N. Benzakour, K. Bouslykhane, J. Kharbach, Structural, magnetic, electronic, thermoelectric, optical and elastic properties of Co2Mn1xTixGe Heusler alloys. Chem. Phys. Lett. 790, 139328 (2022)

    Google Scholar 

  21. M.Y. Raïâ, R. Masrour, A. Jabar, M. Hamedoun, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, J. Kharbach, Structural, electronic, magnetic, optical and thermoelectric properties of Co2Fe1xTixAl alloys: GGA and GGA + U approaches. J. Mater. Res. 37, 1845–1858 (2022)

    ADS  Google Scholar 

  22. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Stability, magnetic, electronic, elastic, thermodynamic, optical, and thermoelectric properties of Co2TiSn, Co2ZrSn and Co2HfSn Heusler alloys from calculations using generalized gradient approximation techniques. Mater. Sci. Mater. Electron. 33, 20229–20256 (2022)

    Google Scholar 

  23. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Diluted effect on the structural, magnetic, electronic, thermodynamic, optical and thermoelectric properties of the Heusler alloys Co2Fe1xTixGa: GGA and GGA + U approaches. Opt. Quant. Electron. 55, 140 (2023)

    Google Scholar 

  24. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Structural, electronic, magnetic, elastic, thermoelectric, and thermal properties of Co2FeGa1xSix Heusler alloys: first-principles calculations. J. Supercond. Nov. Magn. 36, 349–365 (2023)

    Google Scholar 

  25. M. Y. Raïâ, R. Masrour, A. Jabar, M. Hamedoun, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, J. Kharbach, Investigations of martensitic, thermodynamics, elastic, electronic, magnetic, thermal and thermoelectric properties of Co2FeZ Heusler alloys (Z = Si; Ge; Al; Ga): a first principle study, Mol. Phys. 120, e2075289 (2022)

  26. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Half-metalicity, mechanical, optical, thermodynamic, and thermoelectric properties of full Heusler alloys Co2TiZ (Z = Si; Ge; Sn). Opt. Quant. Electron. 55, 512 (2023)

    Google Scholar 

  27. Y. El Krimi, R. Masrour, A. Jabar, A comparative study of structural electronic and magnetic properties of full-Heuslers Co2MnZ (Z=Al, Ge and Sn). J. Mol. Struct. 1220, 128707–128717 (2020)

    Google Scholar 

  28. Y. El Krimi, R. Masrour, A. Jabar, Electronic, magnetic, elastic, thermal and thermoelectric proprieties of Co2MnZ (Z=Al, Ge, Sn). J. Mol. Graph. Mod. 114, 108165–108178 (2022)

    Google Scholar 

  29. Y. El Krimi, R. Masrour, A. Jabar, Structural, electronic and magnetic properties of full-Heusler alloy Co2CrAl. Inorg. Chem. Commun. 121, 108207 (2020)

    Google Scholar 

  30. Y. El Krimi, R. Masrour, A. Jabar, Co2CrGa as a novel promising thermoelectric and magnetocaloric material. Mater. Today Energy 20, 100685–100698 (2021)

    Google Scholar 

  31. Y. El Krimi, R. Masrour, Cobalt-based full Heusler compounds Co2FeZ (Z = Al, Si, and Ga): a comprehensive study of competition between XA and L21 atomic ordering with ab initio calculation. Mater. Sci. Eng., B 284, 115906 (2022)

    Google Scholar 

  32. V. Srivastava, N. Kaur, X. Wang, M. Mushtaq, S. AhmadDar, First-principles study on structural, electronic, magnetic, elastic, mechanical and thermodynamic properties of Mn2PtCo Heusler alloy. J. Energy Res. 45, 11305–11319 (2021)

    Google Scholar 

  33. R. Masrour, A. Jabar, S. Labidi, Y. El Krimi, M. Ellouze, M. Labidi, A. Amara, Study of structural, elastic, thermal, electronic and magnetic properties of Heusler Mn2NiGe: an Ab initio calculations and Monte Carlo simulations. Mater. Today Commun. 26, 101772 (2021)

    Google Scholar 

  34. Y. El Krimi et al., Structural, electronic, magnetic and thermoelectric properties of full-Heusler Fe2MnSi: ab initio calculations. Results Phys. 18, 103252–103260 (2020)

    Google Scholar 

  35. H. Nakatsugawa, T. Ozaki, H. Kishimura, Y. Okamoto, Thermoelectric properties of Heusler Fe2TiSn alloys. J. Electron. Mater. 49, 2802–2812 (2020)

    ADS  Google Scholar 

  36. M.Y. Raïâ, R. Masrour, M. Hamedoun, J. Kharbach, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, Structural stability, electronic, magnetic, elastic, thermal, thermoelectric and optical properties of L21 and XA phases of Ti2FeGe Heusler compound: GGA and GGA + U methods. Nano. Micro. Thermo. Eng. 27, 1–24 (2023)

  37. A. Boochani, M. Jamal, M. Shahrokhi et al., Ti2VGe heuslerene: theoretical prediction of a novel 2D material. J Mater Chem C 7(43), 13559–13572 (2019)

    Google Scholar 

  38. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater–Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B Condens. Matter Mater. Phys. 66(17), 174429 (2002)

    ADS  Google Scholar 

  39. X. Xu, D. Zhang, Y. Wu, X. Zhang, X. Li, H. Yang, Y. Jiang, Electronic structures of Heusler alloy Co2FeAl1xSix surface. Rare Met. 31(2), 107–111 (2012)

    Google Scholar 

  40. H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D Appl. Phys. 40, 1507–1523 (2007)

    ADS  Google Scholar 

  41. I. Shigeta, Y. Fujimoto, R. Ooka, Y. Nishisako, M. Tsujikawa, R.Y. Umetsu, A. Nomura, K. Yubuta, Y. Miura, T. Kanomata, M. Shirai, J. Gouchi, Y. Uwatoko, M. Hiroi, Pressure effect on the magnetic properties of the half-metallic Heusler alloy Co2TiSn. Phys. Rev. B 97, 104414 (2018)

    ADS  Google Scholar 

  42. A. Rahman, M.U. Rehman, H. Zhao, W. Liu, J. Wang, Y. Lu, K. Ruan, R. Dai, Z. Wang, X. Tao, L. Zhang, Z. Zhang, Itinerant magnetism in the half-metallic Heusler compound Co2HfSn: evidence from critical behavior combined with first-principles calculations. Phys. Rev. B 103, 094425 (2021)

    ADS  Google Scholar 

  43. K.H.J. Buschow, P.G. Van Engen, R. Jongebreur, Magneto-optical properties of metallic ferromagnetic materials. J. Magn. Magn. Mater. 38, 1–22 (1983)

    ADS  Google Scholar 

  44. K.H.J. Buschow, P.G. Van Engen, Magnetic and magneto-optical properties of Heusler alloys based on aluminium and gallium. J. Magn. Magn. Mater. 25, 90–96 (1981)

    ADS  Google Scholar 

  45. V.V. Marchenkov, Y.A. Perevozchikova, N.I. Kourov et al., Peculiarities of the electronic transport in half-metallic co-based Heusler alloys. J. Magn. Magn. Mater. 459, 211–214 (2018)

    ADS  Google Scholar 

  46. W. Zhang, L. Zhao, Z. Qian, Y. Sui, Y. Liu, W. Su, W. Zhang, L. Zhao, Z. Qian, Y. Sui, Y. Liu, W. Su, M. Zhang, Z. Liu, G. Liu, G. Wu, Magnetic properties of the Heusler alloy Co2TiAl synthesized by melt-spinning technique. J. Alloy. Compd. 431(1), 65–67 (2007)

    Google Scholar 

  47. K.R.A. Ziebeck, P.J. Webster, A neutron diffraction and magnetization study of Heusler alloys containing Co and Zr, Hf, V or Nb. J. Phys. Chem. Solid 35, 1 (1974)

    ADS  Google Scholar 

  48. R.Y. Umetsu, K. Kobayashi, R. Kainuma, Y. Yamaguchi, K. Ohoyama, A. Sakuma, K. Ishida, Powder neutron diffraction studies for the L21 phase of Co2YGa (Y= Ti, V, Cr, Mn and Fe) Heusler alloys. J. Alloy. Compd. 499(1), 1–6 (2010)

    Google Scholar 

  49. H.P. Han, Ferromagnetic material of the nearly half-metallic alloy Co2TiGa. Adv. Mater. Res. 690, 590–593 (2013)

    Google Scholar 

  50. B. Fadila, M. Ameri, D. Bensaid et al., Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y = Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn Mater. 448, 208–220 (2018)

    ADS  Google Scholar 

  51. R. Jain, N. Lakshmi, V. Kumar Jain et al., Electronic structure, magnetic and optical properties of Co2TiZ (Z = B, Al, Ga, In) Heusler alloys. J. Magn. Magn. Mater. 448, 278–286 (2018)

    ADS  Google Scholar 

  52. K. Seema, R. Kumar, Half-metallic behavior of Co2YZ (Y = V, Cr; Z = Al, Ga) under pressure: a DFT study. Appl. Phys. A 116(3), 1199–1209 (2014)

    ADS  Google Scholar 

  53. Y. Chieda, T. Kanomata, K. Fukushima, K. Matsubayashi, Y. Uwatoko, R. Kainuma, K. Oikawa, K. Ishida, K. Obara, T. Shishido, Magnetic properties of Mn-rich Ni2MnSn Heusler alloys under pressure. J. Alloy. Compd. 486(1), 51–54 (2009)

    Google Scholar 

  54. P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 339–415 (1990)

    Google Scholar 

  55. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Vienna, 2001)

    Google Scholar 

  56. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    ADS  Google Scholar 

  57. V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943 (1991)

    ADS  Google Scholar 

  58. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16929 (1993)

    ADS  Google Scholar 

  59. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators with a semi-local exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    ADS  Google Scholar 

  60. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    MATH  ADS  Google Scholar 

  61. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244–247 (1944)

    MathSciNet  MATH  ADS  Google Scholar 

  62. M.L. Cohen, Calculation of bulk moduli of diamond and zinc-blende solids. Phys. Rev. B 32, 7988 (1985)

    ADS  Google Scholar 

  63. A. Yakoubi, O. Baraka, B. Bouhafs, Structural and electronic properties of the Laves phase based on rare earth type BaM2 (M = Rh, Pd, Pt). Results Phys. 2, 58 (2012)

    ADS  Google Scholar 

  64. Z.H. Zeng, F. Calle-Vallejo, M.B. Mogensen, J. Rossmeisl, Generalized trends in the formation energies of perovskite oxides. Phys. Chem. Chem. Phys. 15, 7526 (2013)

    Google Scholar 

  65. A. Amudhavalli, R. Rajeswarapalanichamy, K. Iyakutti, Investigation of half-metallic and magnetic phase transition in Co2TiZ (Z = Al, Ga, In) Heusler alloys. Phase Trans. 92, 875–887 (2019)

    Google Scholar 

  66. S.C. Lee, T.D. Lee, Magnetic and half-metallic properties of the full-Heusler alloys Co2TiX (X=Al, Ga;Si, Ge, Sn;Sb. J. Appl. Phys. 97, 10C307 (2005)

    ADS  Google Scholar 

  67. Z. Muthui, R. Musembi, J. Mwabora, A. Kashyap, Effect of the Y element on the structural, electronic and magnetic properties of Heusler compounds Co2YIn (Y = V, Nb, and Ti): an ab initio study. AIP Adv. 11, 015107 (2021)

    ADS  Google Scholar 

  68. S. Khenchou, A. Guibadjk,·B. Lagoun, A. Chadli, S. Maabed, First-principles prediction of structural, magnetic, electronic, and elastic properties of full-heusler compounds Co2YIn (Y = Ti, V). J. Supercond. Nov. Magn. (2016). https://doi.org/10.1007/s10948-016-3589-9

    Article  Google Scholar 

  69. M. Gilleßen, Von der Fakultat fur Mathematik, Informatikund Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades eines Doktors derNaturwissenschaften genehmigte Dissertation, Thesis, Aachen (2009)

  70. B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johansson, B.I. Lundqvist, Elastic and optical properties of α- and κ-Al2O3. Phys. Rev. 59, 12777 (1999)

    Google Scholar 

  71. S.A. Mir, D.C. Gupta, Systematic investigation of the magneto-electronic structure and optical properties of new halide double perovskites Cs2NaMCl6 (M = Mn, Co and Ni) by spin polarized calculations. RSC Adv. 10, 26277 (2020)

    ADS  Google Scholar 

  72. A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Z. Angew. Math. Mech. 9, 49–58 (1929)

    Google Scholar 

  73. W. Voigt, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik) (Springer, Berlin, 2014)

    MATH  Google Scholar 

  74. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952)

    ADS  Google Scholar 

  75. S.F.X.C.I.I. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh, Dublin. Philos. Mag. J. Sci. 45, 823–843 (1954)

    Google Scholar 

  76. S.A. Mir, D.C. Gupta, New ferromagnetic half-metallic perovskites for spintronic applications: BaMO3 (M = Mg and Ca). RSC Adv. 10, 26277 (2020)

    ADS  Google Scholar 

  77. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, Hoboken, 2004), p.156

    Google Scholar 

  78. P. Wachter, M. Filzmoser, J. Rebizant, Electronic and elastic properties of the light actinide tellurides. Phys. B Condens. Matter 293, 199–223 (2001)

    ADS  Google Scholar 

  79. E. Schreiber, O.L. Anderson, N. Soga, J.F. Bell, Elastic constants and their measurement. J. Appl. Mech. 42, 747–748 (1975)

    ADS  Google Scholar 

  80. K.M. Knowles, P.R. Howie, The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials. J. Elast. 120(1), 87–108 (2015)

    MathSciNet  MATH  Google Scholar 

  81. R. Gaillac, P. Pullumbi, F. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28, 275201 (2016)

    Google Scholar 

  82. M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)

    MATH  ADS  Google Scholar 

  83. M.A. Blanco, A. Martin Pendas, E. Francisco, J.M. Recio, R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J. Mol. Struct. Theochem. 368, 245–255 (1996)

    Google Scholar 

  84. P. Debye, Zur Theorie der spezifischen Wärmen. Ann. Phys. 39, 789 (1912)

    MATH  Google Scholar 

  85. M.A. Zagrebin, V.V. Sokolovskiy, V.D. Buchelnikov, Electronic and magnetic properties of the Co2-based Heusler compounds under pressure: first-principles and Monte Carlo studies. J. Phys. D Appl. Phys. 49, 355004–355019 (2016)

    Google Scholar 

  86. R. Mohammad, Half-metallic property of the bulk and (001) surfaces of MNaCs (MDP, As) half-Heusler alloys: a density functional theory approach, Surface Sci. 674, 103–114 (2018)

  87. T. Kanomata, K. Shirakawa, T. Kaneko, Effect of hydrostatic pressure on the curie temperature of the Heusler alloys Co2TiAl and Co2TiGa. J. Phys. Colloq. 49, C8–C143 (1988)

    Google Scholar 

  88. E. DiMasi, M.C. Aronson, B.R. Coles, Pressure dependence of the Curie temperature of Co2TiAl. Phys. Rev. B 47, 14301 (1993)

    ADS  Google Scholar 

  89. T. Sasaki, T. Kanomata, T. Narita, H. Nishihara, R. Note, H. Yoshida, T. Kaneko, Magnetic properties of Co2TiGa compound. J. Alloys Compd. 317–318, 406 (2001)

    Google Scholar 

  90. S.D. De Souzai, R.N. Saxena, Magnetic hyperfine fields in Heusler alloys Co YZ (Y = Ti, Zr; Z = AI, Ga, Sn). Hyperfine Interact. 34, 431–434 (1987)

    ADS  Google Scholar 

  91. G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (2006)

    MATH  ADS  Google Scholar 

  92. B. Ryu, M.W. Oh, Computational simulations of thermoelectric transport properties. J. Korean Ceram. Soc. 53, 273 (2016)

    Google Scholar 

  93. M.-S. Lee, F.P. Poudeu, S.D. Mahanti, Electronic structure and thermoelectric properties of Sb-based semiconducting half-Heusler compounds. Phys. Rev. B 83, 085204 (2011)

    ADS  Google Scholar 

  94. S.A. Khandy, I. Islam, D.C. Gupta, A. Laref, Predicting the electronic structure, magnetism, and transport properties of new Co-based Heusler alloys. Int. J. Energy Res. 42(13), 4221 (2018)

    Google Scholar 

  95. H. Yilin, W. Yang, L. Tingzhou, R. Khenata, Y. Tie, W. Xiaotian, Electronic, magnetic, half-metallic, and mechanical properties of a new equiatomic quaternary Heusler compound YRhTiGe: a first-principles study. Materials 11, 797 (2018)

    Google Scholar 

  96. T.M. Bhat, D.C. Gupta, First-principles study of high spin-polarization and thermoelectric efficiency of ferromagnetic CoFeCrAs quaternary Heusler alloy. J. Magn. Magn. Mater. 449, 493–499 (2018)

    ADS  Google Scholar 

  97. S. Yousuf, D.C. Gupta, Ternary germanide Li2ZnGe: a new candidate for high temperature thermoelectrics. J. Alloys Compd. 738, 501 (2018)

    Google Scholar 

  98. V.N. Belomestnykh, E.P. Tesleva, Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids. Tech. Phys. 49, 1098–1100 (2004)

    Google Scholar 

  99. C.L. Julian, Theory of heat conduction in rare-gas crystals. Phys. Rev. 137, A128-137 (1965)

    MathSciNet  ADS  Google Scholar 

  100. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972)

    Google Scholar 

  101. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    ADS  Google Scholar 

  102. F.N.C. Anyaegbunam, C. Augustine, a study of optical band gap and associated Urbach energy tail of chemically deposited metal oxides binary thin films. Digest J. Nano. Biostruct. 13, 847–856 (2018)

    Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

MYR: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. RM: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. MH: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. JK: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. AR: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. AH: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. NB: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration. KB: conceptualization, methodology, software, investigation, validation, formal analysis, formal analysis, no funding acquisition, writing—original draft preparation, writing—reviewing and editing, supervision, project administration.

Corresponding author

Correspondence to R. Masrour.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raïâ, M.Y., Masrour, R., Hamedoun, M. et al. Thermodynamic, electronic, magnetic, thermoelectric, and optical properties of full Heuslers compounds Co2TiAl(Ga, In): A First principles study. Appl. Phys. A 129, 493 (2023). https://doi.org/10.1007/s00339-023-06744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06744-5

Keywords

Navigation