Skip to main content
Log in

Stability, magnetic, electronic, elastic, thermodynamic, optical, and thermoelectric properties of Co2TiSn, Co2ZrSn and Co2HfSn Heusler alloys from calculations using generalized gradient approximation techniques

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Structural, magnetic, electronic, elastic, thermodynamic, optical, and thermoelectric properties of full-Heusler alloys Co2YSn (Y = Ti; Zr; Hf) were determined using density functional theory-based WIEN2k code within GGA and GGA + U approximations for exchange correlation functions. The calculated formation energies and elastic parameters demonstrate the stability of these alloys. It was also observed that the studied compounds have a ductile structure and exhibit anisotropic behavior. The magnetic moment of these systems is equal to 2 μB, which conforms to the Slater–Pauling rule. In addition, the half-metallic ferrimagnetic behavior and good bandgap in the minority spin are showed for all compounds. The optical properties are systematically studied by computing the optical parameters. The existence of bandgaps with minimal energy loss in IR and visible regions makes these materials suitable candidates for optoelectronic devices. The thermoelectric properties of these systems were also examined in terms of temperature and chemical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data and material were available. Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. P.J. Webster, K.R.A. Ziebeck, Alloys and compounds of d-elements with main group elements—part 2, in Landolt-Bornstein, New Series, Group III, vol. 19, ed. by H.P.J. Wijn (Berlin, Springer, 1988)

    Google Scholar 

  2. X.M. Zhang, G.Z. Xu, Y. Du, E.K. Liu, Z.Y. Liu, G.D. Liu, W.H. Wang, G.H. Wu, Phase stability, magnetism and generalized electron-filling rule of vanadium-based inverse Heusler compounds. Phys. Lett. 104, 27012 (2013)

    Google Scholar 

  3. C. Felser, A. Hirohata (eds.), Heusler Alloys: Properties, Growth, Applications (Springer, New York, 2016)

    Google Scholar 

  4. F. Heusler, Über magnetische manganlegierungen. Verhandlungen Dtsch. Phys. Ges. 5, 219 (1903)

    CAS  Google Scholar 

  5. P.J. Brown, K.U. Neumann, P.J. Webster, K.R.A. Ziebeck, The magnetization distributions in some Heusler alloys proposed as half-metallic ferromagnets. J. Phys. Condens. Matter 12, 1827 (2000)

    Article  CAS  Google Scholar 

  6. X.Q. Chen, R. Podloucky, P. Rogl, Ab initio prediction of half-metallic properties for the ferromagnetic Heusler alloys Co2MSi (M=Ti, V, Cr). J. Appl. Phys. 100, 113901 (2006)

    Article  CAS  Google Scholar 

  7. I. Galanakis, P.H. Mavropoulos, P.H. Dederichs, Electronic structure and Slater-Pauling behaviour in half-metallic Heusler alloys calculated from first principles. J. Phys. D 39, 765 (2006)

    Article  CAS  Google Scholar 

  8. S.C. Lee, T.D. Lee, P. Blaha, K. Schwarz, Magnetic and half-metallic properties of the full-Heusler alloys Co2TiX ( X = Al, Ga; Si, Ge, Sn; Sb ). J. Appl. Phys. 97, 10C307 (2005)

    Article  CAS  Google Scholar 

  9. R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024 (1983)

    Article  Google Scholar 

  10. H.C. Kandpal, G.H. Fecher, C. Felser, Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds. J. Phys. D 40, 1507 (2007)

    Article  CAS  Google Scholar 

  11. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Origin and properties of the gap in the half-ferromagnetic Heusler alloys. Phys. Rev. B 66, 134428 (2002)

    Article  CAS  Google Scholar 

  12. H.C. Kandpal, G.H. Fecher, C. Felser, G. Schonhense, Correlation in the transition-metal-based Heusler compounds Co2MnSi and Co2FeSi. Phys. Rev. B 73, 094422 (2006)

    Article  CAS  Google Scholar 

  13. Y. Sakuraba, K. Takanashi, Y. Kota, T. Kubota, M. Oogane, A. Sakuma, Y. Ando, Evidence of Fermi level control in a half-metallic Heusler compound Co2MnSi by Al-doping: comparison of measurements with first-principles calculations. Phys. Rev. B 81, 144422 (2010)

    Article  CAS  Google Scholar 

  14. Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, H. Kubota, Giant tunneling magnetoresistance in Co2MnSi/Al-O/Co2MnSi magnetic tunnel junctions. Appl. Phys. Lett. 88, 192508 (2006)

    Article  CAS  Google Scholar 

  15. B. Balke, G.H. Fecher, H.C. Kandpal, C. Felser, K. Kobayashi, E. Ikenaga, J.J. Kim, S. Ueda, Properties of the quaternary half-metal-type Heusler alloy Co2Mn1−xFexSi. Phys. Rev. B 74, 104405 (2006)

    Article  CAS  Google Scholar 

  16. Y. Zhang, W. Liu, H. Niu, Half-metallic ferromagnetism in Cr-doped AlP-density functional calculations. Solid State Commun. 145, 590 (2008)

    Article  CAS  Google Scholar 

  17. Y. Saeed, S. Nazir, A. Shaukat, A.H. Reshak, Ab-initio calculations of Co-based diluted magnetic semiconductors Cd1−xCoxX (X=S, Se, Te). J. Magn. Magn. Mater. 322, 3214 (2011)

    Article  CAS  Google Scholar 

  18. I. Galanakis, P. Mavropoulos, Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B 67, 104417 (2003)

    Article  CAS  Google Scholar 

  19. Y.-Q. Xu, B.-G. Liu, D.G. Pettifor, Half-metallic ferromagnetism of MnBi in zincblende phase. Physica B 329–333, 1117 (2003)

    Article  CAS  Google Scholar 

  20. K.L. Yao, G.Y. Gao, Z.L. Liu, L. Zhu, Half-metallic ferromagnetism of zinc-blende CrS and CrP: a first-principles pseudopotential study. Solid State Commun. 133, 301 (2005)

    Article  CAS  Google Scholar 

  21. K.L. Yao, G.Y. Gao, Z.L. Liu, L. Zhu, Y.L. Li, Half-metallic ferromagnetic semiconductors of V- and Cr-doped CdTe studied from first-principles pseudopotential calculations. Physica B 366, 62 (2005)

    Article  CAS  Google Scholar 

  22. X.-F. Ge, Y.-M. Zhang, First-principles study of half-metallic ferromagnetism in Zn1−xCrxSe. J. Magn. Magn. Mater. 321, 198 (2009)

    Article  CAS  Google Scholar 

  23. Z. Szotek, W.M. Temmerman, A. Svane, L. Petit, G.M. Stocks, H. Winter, Half-metallic transition metal oxides. J. Magn. Magn. Mater. 272–276, 1816 (2004)

    Article  CAS  Google Scholar 

  24. W. Song, J. Wang, Z. Wu, Half metallic properties of Sr2CuOsO6. Chem. Phys. Lett. 482, 246 (2009)

    Article  CAS  Google Scholar 

  25. S. Lv, H. Li, D. Han, Z. Wu, X. Liu, J. Meng, A better ferrimagnetic half-metal LuCu3Mn4O12: predicted from first-principles investigation. J. Magn. Magn. Mater. 323, 416 (2011)

    Article  CAS  Google Scholar 

  26. M.I. Katsnelson, V. Yu Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315 (2008)

    Article  CAS  Google Scholar 

  27. R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fijita, T. Kanomata, K. Ishida, Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957 (2006)

    Article  CAS  Google Scholar 

  28. A. Planes, L. Manosa, M. Acet, Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J. Phys. Condens. Matter 21, 233201 (2009)

    Article  CAS  Google Scholar 

  29. S. Berri, D. Maouche, M. Ibrir, F. Zerarga, A first-principle study of half-metallic ferrimagnetism in the CoFeTiSb quaternary Heusler compound. J. Magn. Magn. Mater. 354, 65 (2014)

    Article  CAS  Google Scholar 

  30. S. Esteki, F. Ahmadian, Electronic structure and half-metallicity in new Heusler alloys CoYO2 (Y = Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, and Zn). J. Magn. Magn. Mater. 438, 12–19 (2017)

    Article  CAS  Google Scholar 

  31. G. Qin, W. Wu, S. Hu, Y. Tao, X. Yan, C. Jing, X. Li, H. Gu, S. Cao, W. Ren, Effect of swap disorder on the physical properties of the quaternary Heusler alloy PdMnTiAl: a first-principles study. IUCrJ 4, 506–511 (2017)

    Article  CAS  Google Scholar 

  32. B. Doumi, A. Mokaddem, A. Sayede, F. Dahmane, Y. Mogulkoc, A. Tadjer, First-principles investigations on ferromagnetic behaviour of Be1-xVxZ (Z=S, Se and Te) (x = 0.25). Superlatt. Microstruct. 88, 139 (2015)

    Article  CAS  Google Scholar 

  33. S.B. Riffat, X. Ma, Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23, 913–935 (2003)

    Article  Google Scholar 

  34. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    Article  CAS  Google Scholar 

  35. L. Bainsla, K.G. Suresh, Equiatomic quaternary Heusler alloys: a material perspective for spintronic applications. Appl. Phys. Rev. 3, 031101 (2016)

    Article  CAS  Google Scholar 

  36. F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27, 063001 (2012)

    Article  CAS  Google Scholar 

  37. K. ÖzdoÇgan, I. Galanakis, E. Sasıoglu, B. Aktas, Defects-driven appearance of half-metallic ferrimagnetism in Co–Mn-based Heusler alloys. Solid State Commun. 142, 492 (2007)

    Article  CAS  Google Scholar 

  38. G.D. Liu, X.F. Dai, H.Y. Lui, J.L. Chen, Y.X. Li, G. Xiao, G.H. Wu, Mn2CoZ (Z=Al, Ga, In, Si, Ge, Sn, Sb) compounds: structural, electronic, and magnetic properties. Phys. Rev. B 77, 14424 (2008)

    Article  CAS  Google Scholar 

  39. K. ÖzdoÇgan, I. Galanakis, First-principles electronic and magnetic properties of the half-metallic antiferromagnet Cr2MnSb. J. Magn. Magn. Mater. 321, L34 (2009)

    Article  CAS  Google Scholar 

  40. V. Sharma, A.K. Solanki, A. Kashyap, Electronic, magnetic and transport properties of Co2TiZ (Z=Si, Ge and Sn): a first-principle study. J. Magn. Magn. Mater. 322, 2922 (2010)

    Article  CAS  Google Scholar 

  41. H. Mori, Y. Odahara, D. Shigyo, T. Yoshitake, E. Miyoshi, Electronic band structure calculations on thin films of the L21 full Heusler alloys X2YSi (X, Y = Mn, Fe, and Co): toward spintronic materials. Thin Solid Films 520, 4979 (2012)

    Article  CAS  Google Scholar 

  42. M.Y. Raïâ, R. Masrour, A. Jabar, A. Rezzouk, M. Hamedoun, A. Hourmatallah, N. Benzakour, K. Bouslykhane, J. Kharbach, Structural, magnetic, electronic, thermoelectric, optic and elastic properties of Co2Mn1-xTixGe Heusler alloys. Chem. Phys. Lett. 790(25), 139328 (2022)

    Article  CAS  Google Scholar 

  43. L. Galdun, P. Szabó, V. Vega, E.D. Barriga Castro, R.M. Reséndez, C. Luna, J. Kovac, O. Milkovi, R. Varga, V.M. Prida, High spin polarization in Co2FeSn Heusler nanowires for spintronics. ACS Appl. Nano Mater. 3(8), 7438–7445 (2020)

    Article  CAS  Google Scholar 

  44. S. Berri, The electronic structure and spin polarization of Co2Mn0.75(Gd, Eu)0.25Z (Z=Si, Ge, Ga, Al) quaternary Heusler alloys. J. Mag. Mag. Mater. 401, 667–672 (2016)

    Article  CAS  Google Scholar 

  45. K.R.A. Ziebeck, P.J. Webster, A neutron diffraction and magnetization study of Heusler alloys containing Co and Zr, Hf, V or Nb. J. Phys. Chem. Solids 35, 1 (1974)

    Article  CAS  Google Scholar 

  46. E.A. Gorlich, R. Kmiec, K. Latka, T. Matlak, K. Ruebenbauer, A. Szytula, K. Tomala, Transferred hyperfine fields at the tin site in the heusler-type alloys Co2YSn (Y = Ti, Zr, Hf, V). Phys. Status Solidi A 30, 765 (1975)

    Article  Google Scholar 

  47. P.G. van Engen, K.H.J. Buschow, M. Erman, Magnetic properties and magneto-optical spectroscopy of Heusler alloys based on transition metals and Sn. J. Magn. Magn. Mater. 30, 374 (1983)

    Article  Google Scholar 

  48. A. Difalco, F. Aversano, S. Boldrini, A. Ferrario, M. Baricco, A. Castellero, Synthesis and characterization of thermoelectric Co2XSn (X = Zr, Hf) Heusler alloys. Metals 10, 624 (2020)

    Article  CAS  Google Scholar 

  49. S. Berri, First-principles study on half-metallic properties of the CoMnCrSb quaternary Heusler compound. J. Supercond. Nov. Magn. 29, 1309–1315 (2016)

    Article  CAS  Google Scholar 

  50. A.S. Babiker, G. Gao, K. Yao, Half-metallicity and magnetism of Heusler alloys Co2HfZ (Z=Al, Ga, Ge, Sn). J. Magn. Magn. Mat. 441, 356–360 (2017)

    Article  CAS  Google Scholar 

  51. A. Yamasaki, S. Imada, R. Arai, H. Utsunomiya, S. Suga, T. Muro, Y. Saitoh, T. Kanomata, S. Ishida, Orbital angular momentum and interpretation of core-absorption magnetic circular dichroism on the band picture in Co-based Heusler alloys Co2YSn (Y=Ti, Zr, and Nb). Phys. Rev. B 65, 104410 (2002)

    Article  CAS  Google Scholar 

  52. Y. El Krimi, R. Masrour, A. Jabar, Electronic, magnetic, elastic, thermal and thermoelectric proprieties of Co2MnZ (Z=Al, Ge, Sn). J. Mol. Graphics Modell. 114, 108165 (2022)

    Article  CAS  Google Scholar 

  53. Y. Miura, M. Shirai, K. Nagao, Ab initio study on stability of half-metallic Co-based full-Heusler alloys. J. Appl. Phys. 99, 08J112 (2006)

    Article  CAS  Google Scholar 

  54. A. Rahman, M.U. Rehman, H. Zhao, W. Liu, J. Wang, Y. Lu, K. Ruan, R. Dai, Z. Wang, X. Tao, L. Zhang, Z. Zhang, Itinerant magnetism in the half-metallic Heusler compound Co2HfSn: evidence from critical behavior combined with first-principles calculations. Phys. Rev. B 103, 094425 (2021)

    Article  CAS  Google Scholar 

  55. A. Tariq, S. Nazir, Cu-doping impact on the electronic and magnetic properties of Co2ZrSn. Physica B 580, 411836 (2020)

    Article  CAS  Google Scholar 

  56. M.Y. Raïâ, R. Masrour, A. Jabar, M. Hamedoun, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, J. Kharbach, Investigations of martensitic, thermodynamics, elastic, electronic, magnetic, thermal and thermoelectric properties of Co2FeZ Heusler alloys (Z=Si; Ge; Al; Ga): a first principle study. Mol. Phys. e2075289 (2022)

  57. Z. Wang, M.G. Vergniory, S. Kushwaha, M. Hirschberger, E.V. Chulkov, A. Ernst, N.P. Ong, R.J. Cava, B.A. Bernevig, Time-reversal-breaking weyl fermions in magnetic heusler alloys. Phys. Rev. Lett. 117, 236401 (2016)

    Article  CAS  Google Scholar 

  58. A. Aguayo, G. Murrieta, Density functional study of the half-metallic ferromagnetism in Co-based Heusler alloys Co2MSn (M= Ti, Zr, Hf) using LSDA and GGA. J. Magn. Magn. Mat. 323, 3013–3017 (2011)

    Article  CAS  Google Scholar 

  59. H. Sadok Cherif, A. Bentouaf, Z.A. Bouyakoub, H. Rached, B. Aïssa, Computational determination of structural, electronic, magnetic and thermodynamic properties of Co2HfZ (Z = Al, Ga, Si and Sn) full Heusler compounds for spintronic applications. J. Alloys Compd. 894, 162503 (2022)

    Article  CAS  Google Scholar 

  60. I. Shigeta, Y. Fujimoto, R. Ooka, Y. Nishisako, M. Tsujikawa, R.Y. Umetsu, A. Nomura, K. Yubuta, Y. Miura, T. Kanomata, M. Shirai, J. Gouchi, Y. Uwatoko, M. Hiroi, Pressure effect on the magnetic properties of the half-metallic Heusler alloy Co2TiSn. Phys. Rev. B 97, 104414 (2018)

    Article  CAS  Google Scholar 

  61. Y. El Krimi, R. Masrour, A. Jabar, Co2CrGa as a novel promising thermoelectric and magnetocaloric material. Mater. Today Energy 20(45), 100685 (2022)

    Google Scholar 

  62. M.Y. Raïâ, R. Masrour, A. Jabar, M. Hamedoun, A. Rezzouk, A. Hourmatallah, N. Benzakour, K. Bouslykhane, J. Kharbach, Structural, electronic, magnetic, optical and thermoelectric properties of Co2Fe1−xTixAl alloys: GGA and GGA+U approaches. J. Mat. Res. 37, 1845–1858 (2022)

    Article  CAS  Google Scholar 

  63. W. Zhang, Z. Qian, Y. Sui, Y. Liu, W. Su, M. Zhang, Z. Liu, G. Liu, G. Wu, Magnetism and Hall effect of the Heusler alloy Co2ZrSn synthesized by melt-spinning process. J. Magn. Magn Mater. 299, 255 (2006)

    Article  CAS  Google Scholar 

  64. E. DeMasi, M.C. Aronson, B.R. Coles, Pressure dependence of the Curie temperature of Co2TiAl. Phys. Rev. 47, 14301 (1993)

    Article  Google Scholar 

  65. T. Kanomata, Y. Amako, Y. Ida, Y. Adachi, T. Osaki, T. Eto, H. Nishihara, I. Shigeta, S. Imada, Magnetic properties of ferromagnetic Heusler alloy Co2ZrSn. J. Phys. Chem. Sol. 164, 110635 (2022)

    Article  CAS  Google Scholar 

  66. S. Nepala, R. Dhakala, I. Galanakis, Ab initio study of the half-metallic full-Heusler compounds Co2ZAl [Z = Sc, Ti, V, Cr, Mn, Fe]; the role of electronic correlations. Mater. Today Commun. 25, 101498 (2020)

    Article  CAS  Google Scholar 

  67. A.W. Carbonari, W. PendlJr, R.N. Attili, R.N. Saxena, Magnetic hyperfine fields in the Heusler alloys Co2YZ (Y=Sc, Ti, Hf, V, Nb; Z=Al, Ga, Si, Ge, Sn). Hyperfine Interact. 80, 971 (1993)

    Article  CAS  Google Scholar 

  68. M. Yin, S. Chen, P. Nash, Enthalpies of formation of selected Co2YZ Heusler compounds. J. Alloys Compd. 577, 49 (2013)

    Article  CAS  Google Scholar 

  69. S. Rauf, S. Arif, M. Haneef, B. Amin, The first principle study of magnetic properties of Mn2WSn, Fe2YSn (Y=Ti, V), Co2YSn (Y=Ti, Zr, Hf, V, Mn) and Ni2YSn (Y=Ti, Zr, Hf, V, Mn) heusler alloys. J. Phys. Chem. Solids 76, 153 (2015)

    Article  CAS  Google Scholar 

  70. T. Kanomata, T. Sasaki, H. Nishihara, H. Yoshida, T. Kaneko, S. Hane, T. Goto, N. Takeishi, S. Ishida, Magnetic properties of ferromagnetic Heusler alloy Co2ZrAl. J. Alloys Compd. 393, 26 (2005)

    Article  CAS  Google Scholar 

  71. S. Li, Y. Liu, Z. Ren, X. Zhang, G. Liu, Electronic structure and half-metallicity of the Heusler alloy Co2ZrGe. J. Korean. Phys. Soc. 65, 1059 (2014)

    Article  CAS  Google Scholar 

  72. S.A. Sofi, D.C. Gupta, High pressure-temperature study on thermodynamics, halfmetallicity, transport, elastic and structural properties of Co-based Heusler alloys: a first-principles study. J. Solid State Chem. 284, 121178 (2020)

    Article  CAS  Google Scholar 

  73. J.Y. Jiu, J.I. Lee, A prediction of half-metallicity in a Co2-based full Heusler compound with the 4d transition-metal element, Co2ZrSi: a first-principles study. J. Korean. Phys. Soc. 51, 155 (2007)

    Article  CAS  Google Scholar 

  74. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. 136, 864 (1964)

    Article  Google Scholar 

  75. P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59, 339–415 (1990)

    Article  Google Scholar 

  76. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties (Vienna University of Technology, Vienna, 2001)

    Google Scholar 

  77. J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  78. V.I. Anisimov, O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43, 7570 (1991)

    Article  CAS  Google Scholar 

  79. V.I. Anisimov, J. Zaanen, O.K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I Phys. Rev. B 44, 943 (1991)

    Article  CAS  Google Scholar 

  80. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyżyk, G.A. Sawatzky, Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48, 16929 (1993)

    Article  CAS  Google Scholar 

  81. R. Golesorkhtabara, P. Pavonea, J. Spitalera, P. Puschniga, C. Draxl, ElaStic: a tool for calculating second-order elastic constants from first principles. Comput. Phys. Comm. 184, 1861–1873 (2013)

    Article  CAS  Google Scholar 

  82. G.H. Fecher, J. Barth, J. Winterlik, C. Felser, Electronic structure and transport properties of the Heusler compound Co2TiAl. J. Phys. D Appl. Phys. 42(8), 084003 (2009)

    Article  CAS  Google Scholar 

  83. N. Kervan, S. Kervan, A first-principle study of half-metallic ferrimagnetism in the Ti2CoGa Heusler compound. J. Magn. Magn. Mater. 324, 645 (2012)

    Article  CAS  Google Scholar 

  84. F. Birch, Finite elastic strain of cubic crystals. Phys. Rev. 71, 809–824 (1947)

    Article  CAS  Google Scholar 

  85. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30(9), 244–247 (1944)

    Article  CAS  Google Scholar 

  86. P.R. Alonso, G.H. Rubiolo, Relative stability of bcc structures in ternary alloys with Ti50Al25Mo25 composition. Phys. Rev. B 62, 237 (2000)

    Article  CAS  Google Scholar 

  87. J. Bai, J.L. Wang, S.F. Shi, J.-M. Raulot, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Complete martensitic transformation sequence and magnetic properties of non-stoichiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations. J. Magn. Magn. Mater. 473, 360–364 (2019)

    Article  CAS  Google Scholar 

  88. J.L. Wang, J. Bai, D. Liu, X.Z. Liang, H.L. Yan, Y.D. Zhang, C. Esling, X. Zhao, L. Zuo, Investigation of martensitic transformation behavior in Ni-Mn-In Heusler alloy from a first-principles study. J. Magn. Magn. Mater. 488, 165339 (2019)

    Article  CAS  Google Scholar 

  89. S.D. de Souza, R.N. Saxena, W. Shreiner, F.C. Zawislak, Magnetic hyperfine fields in Heusler alloys CoYZ (Y = Ti, Zr; Z = Al, Ga, Sn). Hyperfine Interact. 34, 431 (1987)

    Article  Google Scholar 

  90. K. Takizawa, T. Ono, H. Miyajima, Magnetic phase transitions for body-centered tetragonal FeRh1−xPtx system. J. Magn. Magn. Mater. 226–230, 572 (2001)

    Article  Google Scholar 

  91. L.F. Bao, F.X. Hu, R.R. Wu, J. Wang, L. Chen, J.R. Sun, B.G. Shen, L. Li, B. Zhang, X.X. Zhang, Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1−xAlx compounds. J. Phys. D 47, 055003 (2014)

    Article  CAS  Google Scholar 

  92. M. Guezlane, H. Baaziz, F. El Haj Hassan, Z. Charifi, Y. Djaballah, Electronic, magnetic and thermal properties of Co2CrxFe1-xX(X=Al, Si) Heusler alloys: first-principles calculations. J. Magn. Magn. Mater. 414, 219–226 (2016)

    Article  CAS  Google Scholar 

  93. K. Sato, P.H. Dederichs, H. Katayama-Yoshida, J. Kudrnovský, Exchange interactions in diluted magnetic semiconductors. J. Phys. 16, S5491–S5497 (2004)

    CAS  Google Scholar 

  94. S.A. Khandy, D.C. Gupta, Investigation of the transport, structural and mechanical properties of half-metallic REMnO3 (RE = Ce and Pr) ferromagnets. RSC. Adv. 65, 48009 (2016)

    Article  CAS  Google Scholar 

  95. J. Barth, G.H. Fecher, B. Balke, T. Graf, A. Shkabko, A. Weidenkaff, P. Klaer, M. Kallmayer, H.J. Elmers, H. Yoshikawa et al., Anomalous transport properties of the half-metallic ferromagnets Co2TiSi, Co2TiGe and Co2TiSn. Philos. Trans. R. Soc. A 369, 3588–3601 (2011)

    Article  CAS  Google Scholar 

  96. J.P. Velev, P.A. Dowben, E.Y. Tsymbal, S.J. Jenkins, A.N. Caruso, Interface effects in spin-polarized metal/insulator layered structures. Surf. Sci. Rep. 63(9), 400–425 (2008)

    Article  CAS  Google Scholar 

  97. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Slater-Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Phys. Rev. B 66(17), 174429 (2002)

    Article  CAS  Google Scholar 

  98. M. Fine, L. Brown, H. Marcus, Elastic constants versus melting temperature in metals. Scr. Metall. 18, 951–956 (1984)

    Article  CAS  Google Scholar 

  99. G.V. Sinko, N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure. J. Phys. Condens. Matter. 14, 6989–7005 (2002)

    Article  CAS  Google Scholar 

  100. R. Hill, The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 65, 349 (1952)

    Article  Google Scholar 

  101. W. Voigt, About the relationship between the two constants of elasticity of isotropic bodies. Ann. Phys. 274, 573 (1889)

    Article  Google Scholar 

  102. A. Reuss, Calculation of the yield point of mixed crystals based on the plasticity condition for single crystals. J. Appl. Math. Mech. 9, 49 (1929)

    CAS  Google Scholar 

  103. S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London, Edinburgh. Dublin Philos. Mag. J. Sci. 4, 823–843 (1954)

  104. H. Fu, D. Li, F. Peng, T. Gao, X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput. Mater. Sci. 44, 774 (2008)

    Article  CAS  Google Scholar 

  105. X.H. Kang, J.M. Zhang, The structural, electronic, elastic, thermodynamic, magnetic, and optical properties of the yttrium-based full-Heusler alloys Y2CrZ (Z=Si, Ge, Sn). J. Phys. Chem. Solid 119, 71 (2018)

    Article  CAS  Google Scholar 

  106. G. Surucu, Investigation of structural, electronic, anisotropic elastic, and lattice dynamical properties of MAX phases borides: an Ab-initio study on hypothetical M2AB (M= Ti, Zr, Hf; A= Al, Ga, In) compounds. Mater. Chem. Phys. 203, 106 (2018)

    Article  CAS  Google Scholar 

  107. H.M. Ledbetter, Elastic properties of zinc: a compilation and a review. J. Phys. Chem. Ref. Data 6(4), 1181–1203 (1977)

    Article  CAS  Google Scholar 

  108. K.M. Knowles, P.R. Howie, The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials. J. Elast. 120(1), 87–108 (2015)

    Article  Google Scholar 

  109. R. Gaillac, P. Pullumbi, F. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. 28, 275201 (2016)

    Google Scholar 

  110. M.A. Blanco, E. Francisco, V. Luana, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Comput. Phys. Commun. 158, 57 (2004)

    Article  CAS  Google Scholar 

  111. M.A. Blanco, A. Martin Pendas, E. Francisco, J.M. Recio, R. Franco, Thermodynamical properties of solids from microscopic theory: applications to MgF2 and Al2O3. J. Mol. Struct. Theochem. 368, 245–255 (1996)

    Article  CAS  Google Scholar 

  112. P. Debye, Zur Theorie der spezifischen Wärmen. Ann. Phys. 39, 789 (1912)

    Article  CAS  Google Scholar 

  113. A.-T. Petit, P.-L. Dulong, Recherches sur quelques points importants de la Théorie de la Chaleur, Ann. Chim. Phys. 10, 395-413 (1819); English translation in Ann. Philos. 14, 189-198 (1819)

  114. D. Jana, C.L. Sun, L.C. Chen, K.H. Chen, Effect of chemical doping of boron and nitrogen on the electronic, optical, and electrochemical properties of carbon nanotubes. Prog. Mater. Sci. 58, 565 (2013)

    Article  CAS  Google Scholar 

  115. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972)

    Google Scholar 

  116. M. Gajdoš, K. Hummer, G. Kresse, J. Furthmüller, F. Bechstedt, Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73, 045112 (2006)

    Article  CAS  Google Scholar 

  117. H.J. Xiang, D.J. Singh, Suppression of thermopower of NaxCoO2 by an external magnetic field: Boltzmann transport combined with spin-polarized density functional theory. Phys. Rev. B 76, 195111–195115 (2007)

    Article  CAS  Google Scholar 

  118. A.S. Botana, P.M. Botta, C. de la Calle, A. Piňeiro, V. Pardo, D. Baldomir, J.A. Alonso, Non-one-dimensional behavior in charge-ordered structurally quasi-one-dimensional Sr6Co5O15. Phys. Rev. B. 83, 1844201–1844208 (2011)

    Article  CAS  Google Scholar 

  119. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)

    Article  CAS  Google Scholar 

  120. A.H. Reshak, Thermoelectric properties of fully hydrogenated graphene: semi-classical Boltzmann theory. J. Appl Phys. 117(22), 225104 (2015)

    Article  CAS  Google Scholar 

  121. C. Calvin Hu, Modern semiconductor devices for integrated circuits, Part I: electrons and holes in a semiconductor (2011)

  122. G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and calculation. The first draft of the manuscript was written by all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rachid Masrour.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raïâ, M.Y., Masrour, R., Hamedoun, M. et al. Stability, magnetic, electronic, elastic, thermodynamic, optical, and thermoelectric properties of Co2TiSn, Co2ZrSn and Co2HfSn Heusler alloys from calculations using generalized gradient approximation techniques. J Mater Sci: Mater Electron 33, 20229–20256 (2022). https://doi.org/10.1007/s10854-022-08841-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08841-2

Navigation