Skip to main content
Log in

Nonlinear alternating current conduction study in manganese-doped zinc oxide nanocapsules and nanoplates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, the real part of ac conductance (Σ(T, f)) of pure ZnO nanoparticle, manganese-doped ZnO nanocapsules and nanoplates was estimated as a component of frequency (f) by shifting zero-frequency Ohmic conductance (Σ0) with the tuning of the temperature (T) to understand the nonlinear AC conduction mechanism in semiconductor. The UV–VIS absorption spectrum showed a change in band gap from 3.67 eV for pure ZnO NPs to 3.31 eV for Mn-doped ZnO NPs with the change in excitonic peak from 372.5 nm for ZnO NPs to 375 nm for Mn-ZnO NPs. The HRTEM and SAED analysis along with XRD showed formation of nanocapsules and nanoplates with hexagonal wurtzite crystal phase. The doped semiconductor nanocrystals showed a ‘T’ dependent transition nature. Scaling speculations from theoretical models are used to dissect the effects of ac conduction and the nonlinearity exponent (xf) of the onset frequency \({{f}_{\mathrm{c}}\sim\Sigma }_{0}^{{x}_{f}}\). The overall scaling formalism for the ac conductance Σ0 was properly scaled with a universal curve as per the information for Σ(T,f) under different T. The metallic and semiconductor contribution in the dc conductivity of the doped nanosystems is highlighted. The normalized conductance (Σ/Σ0) as a function of normalized frequency curves was depicted by a single power law for Mn-ZnO nanocapsules and nanoplates. The AC conduction process showed that xf is a lot of phase delicate and can be utilized to describe the phase changes in these doped nanosystems originated due to change in Mn2+ doping concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. H.M. Xiong, Y. Xu, Q.-G. Ren, Y.-Y. Xia, J. Am. Chem. Soc. 130, 7522 (2008)

    Article  Google Scholar 

  2. F. Bagheri, H. Haratizadeh, Mater. Sci. Semicond. Process. 141, 106422 (2022)

    Article  Google Scholar 

  3. M. Belhaj, C. Dridi, H. Elhouichet, J.C. Valmalette, J. Appl. Phys. 119, 095501 (2016)

    Article  ADS  Google Scholar 

  4. F. Abrinaei, N. Molahasani, J. Optical Soc. Am. B 35(8), 2015 (2018)

    Article  ADS  Google Scholar 

  5. M. Nirmala, A. Anukaliani, Mater. Lett. 65, 2645 (2011)

    Article  Google Scholar 

  6. J. Zhong, S. Muthukumar, Y. Chen, Y. Lu, H.M. Ng, W. Jiang, E.L. Garfunkel, Appl. Phys. Lett. 83, 3401 (2003)

    Article  ADS  Google Scholar 

  7. C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, J. Mater. Sci.: Mater. Electron. 29, 7020 (2018)

    Google Scholar 

  8. D. Sharma, R. Jha, J. Alloy. Compd. 698, 532 (2017)

    Article  Google Scholar 

  9. M.H. Zulfiqar, M. Zubair, A. Khan, T. Hua, N. Ilyas, S. Fashu, A.M. Afzal, M.A. Safeen, R. Khan, J. Mater. Sci. Mater. Electron. 32, 9463–9474 (2021)

    Article  Google Scholar 

  10. H. Saadi, Z. Benzarti, P. Sanguino, Y. Hadouch, D. Mezzane, K. Khirouni, N. Abdelmoula, H. Khemakhem, Appl. Phys. A 128, 691 (2022)

    Article  ADS  Google Scholar 

  11. V.D. Mote, Y. Purushotham, B.N. Dole, Mater. Des. 96, 99 (2016)

    Article  Google Scholar 

  12. C. Belkhaoui, N. Mzabi, H. Smaoui, Mater. Res. Bull. 111, 70 (2019)

    Article  Google Scholar 

  13. D. Zhang, Russ. J. Phys. Chem. A 86(1), 93 (2012)

    Article  Google Scholar 

  14. A.K. Bhunia, S. Saha, Luminescence 36, 149 (2021)

    Article  Google Scholar 

  15. A.K. Bhunia, P.K. Jha, S. Saha, Luminescence 37, 892 (2022)

    Article  Google Scholar 

  16. S. Benramache, B. Benhaoua, H. Bentrah, J. Nanostr. Chem. 3, 1 (2013)

    Google Scholar 

  17. Z.R. Tian, J.A. Voigt, J. Liu, B. Mckenzie, M.J. Mcdermott, M.A. Rodriguez, H. Konishi, H. Xu, Nat. Mater. 2, 821 (2003)

    Article  ADS  Google Scholar 

  18. R. Karmakar, S.K. Neogi, A. Banerjee, S. Bandyopadhyay, Appl. Surf. Sci. 263, 671 (2012)

    Article  ADS  Google Scholar 

  19. A.K. Bhunia, T. Kamilya, S. Saha, Chem. Select 1, 2872–2882 (2016)

    Google Scholar 

  20. A.K. Bhunia, T.N. Ghosh, J. Mater. Sci. 33, 17963 (2022)

    Google Scholar 

  21. J.C. Dyre, T.B. Schroder, Rev. Mod. Phys. 72, 873 (2000)

    Article  ADS  Google Scholar 

  22. W.K. Lee, J.F. Liu, A.S. Nowich, Phys. Rev. Lett. 67, 1559 (1991)

    Article  ADS  Google Scholar 

  23. A.S. Nowick, A.V. Vaysleyb, B.S. Lim, J. Appl. Phys. 76, 4429 (1994)

    Article  ADS  Google Scholar 

  24. K.K. Bardhan, R.K. Chakrabarty, Phys. Rev. Lett. 72, 1068 (1994)

    Article  ADS  Google Scholar 

  25. T.N. Ghosh, U.N. Nandi, S. Chattopadhyay, D. Jana, S.C. Saha, Solid State Commun. 152, 1595 (2012)

    Article  ADS  Google Scholar 

  26. U.N. Nandi, S. Sircar, A. Karmakar, S. Giri, J. Phys Condens. Matter 24, 265601 (2012)

    Article  ADS  Google Scholar 

  27. D. Chakraborty, U.N. Nandi, D. Jana, Md.G. Masud, S. Giri, J. Appl. Phys. 118, 035103 (2015)

    Article  ADS  Google Scholar 

  28. U.N. Nandi, Y.Z. Long, D. Chakraborty, Results Phys. 3, 84 (2013)

    Article  ADS  Google Scholar 

  29. D. Talukdar, U.N. Nandi, K.K. Bardhan, C.C. Bufon, T. Heinzel, A. De, C.D. Mukherjee, Phys. Rev. B 84, 054205 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Physics of Vidyasagar University. The author AKB is thankful to the Department of Physics, Government General Degree College at Gopiballavpur-II. The author AKB is thankful to the CRF, IIT Kharagpur.

Funding

Author AKB is thankful to Dept. of Higher Education, Science and Technology and Biotechnology, Government of West Bengal, India.

Author information

Authors and Affiliations

Authors

Contributions

AKB and SS assisted the problem of the research, carried out the measurement and manuscript writing. AKB and TNG, KB assisted the measurement, discussed and helped draft the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Amit Kumar Bhunia.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhunia, A.K., Ghosh, T.N., Bhunia, K. et al. Nonlinear alternating current conduction study in manganese-doped zinc oxide nanocapsules and nanoplates. Appl. Phys. A 129, 81 (2023). https://doi.org/10.1007/s00339-022-06373-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06373-4

Keywords

Navigation