Skip to main content
Log in

Advanced photocatalytic degradation of textile dyes and removal of heavy metal ions from MFe2O4 using photo-Fenton mechanism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, magnetic bimetallic spinel ferrites, MFe2O4 (M = Cu, Ni, Zn, and Cd) were synthesized by a feasible sol–gel self-combustion method. The single-phase cubic spinel structure and microstructural changes were confirmed by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The spinel structure’s functional groups (M–O bond) were verified through Fourier transform infrared (FTIR) spectroscopy. CuFe2O4 has the highest specific surface area (181.22 m2/g), which was determined by Brunauer-Emmett-Teller (BET) analysis. Magnetic study of the synthesized samples has been done by vibrating sample magnetometer (VSM) at ambient temperature. The catalytic activity of metal-ion-tailored MFe2O4 spinel ferrite nanoparticles was performed for the photo-Fenton degradation of cationic, anionic dyes, and removal of heavy metal ions [Cr(VI)] under visible light irradiation. The large specific surface area (181.22 m2/g), small value of the optical energy bandgap (1.55 eV), and better degradation efficiency of the photocatalyst are related to changes in shape, size, optimized magnetic, and optical properties. It acts as a promising material for the degradation of textile dyes and the removal of heavy metal ions from contaminated water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All the generated datasets during the synthesis and analysis of samples of the current study can be provided by the corresponding author after a reasonable demand.

References

  1. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Arab. J. Chem. (2019). https://doi.org/10.1016/j.arabjc.2014.10.049

    Article  Google Scholar 

  2. H. Qin, Y. He, P. Xu, D. Huang, Z. Wang, H. Wang, Z. Wang, Y. Zhao, Q. Tian, C. Wang, Adv. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.cis.2021.102486

    Article  PubMed  Google Scholar 

  3. A. Amedlous, O. Amadine, Y. Essamlali, H. Maati, N. Semlal, M. Zahouily, J. Environ. Chem. Eng. (2021). https://doi.org/10.1016/j.jece.2021.105501

    Article  Google Scholar 

  4. P.A. Vinosha, A. Manikandan, A.C. Preetha, A. Dinesh, Y. Slimani, M.A. Almessiere, A. Baykal, B. Xavier, G.F. Nirmala, J. Supercond. Novel Magn. (2021). https://doi.org/10.1007/s10948-021-05854-6

    Article  Google Scholar 

  5. E. Casbeer, V.K. Sharma, X.-Z. Li, Sep. Purif. Technol. (2012). https://doi.org/10.1016/j.seppur.2011.11.034

    Article  Google Scholar 

  6. N. Tyagi, W. Ashraf, H. Mittal, T. Fatima, M. Khanuja, M.K. Singh, Dyes Pigm. (2023). https://doi.org/10.1016/j.dyepig.2022.110998

    Article  Google Scholar 

  7. F.A. Janjhi, I. Ihsanullah, M. Bilal, R. Castro-Muñoz, G. Boczkaj, F. Gallucci, Water Res. Indus. (2023). https://doi.org/10.1016/j.wri.2023.100202

    Article  Google Scholar 

  8. P. Mondal, A. Nandan, S. Ajithkumar, N.A. Siddiqui, S. Raja, A.K. Kola, Balakrishnan Environ. Res. (2023). https://doi.org/10.1016/j.envres.2023.116071

    Article  PubMed  Google Scholar 

  9. N. Tyagi, M.K. Singh, M. Khanuja, Mater. Res. Bull. (2023). https://doi.org/10.1016/j.materresbull.2023.112216

    Article  Google Scholar 

  10. N. Tyagi, G. Sharma, D. Kumar, P.P. Neelratan, D. Sharma, M. Khanuja, M.K. Singh, V. Singh, A. Kaushik, S.K. Sharma, Coord. Chem. Rev. (2023). https://doi.org/10.1016/j.ccr.2023.215394

    Article  Google Scholar 

  11. O.J. Hao, H. Kim, P.-C. Chiang, Crit. Rev. Environ. Sci. Technol. (2000). https://doi.org/10.1080/10643380091184237

    Article  Google Scholar 

  12. S. Raghu, C.A. Basha, J. Hazard. Mater. (2007). https://doi.org/10.1016/j.jhazmat.2007.03.087

    Article  PubMed  Google Scholar 

  13. S.F. Ahmed, M. Mofijur, S. Nuzhat, A.T. Chowdhury, N. Rafa, Md.. Alhaz Uddin, A. Inayat, J. Hazard. Mater. (2021). https://doi.org/10.1016/j.jhazmat.2021.125912

    Article  PubMed  Google Scholar 

  14. R.Y. Krishnan, S. Manikandan, R. Subbaiya, N. Karmegam, W. Kim, M. Govarthanan, Sci. Total Environ. (2023). https://doi.org/10.1016/j.scitotenv.2022.159681

    Article  PubMed  Google Scholar 

  15. H. Solayman, M.A. Hossen, A. Abd Aziz, N.Y. Yahya, L.K. Hon, S.L. Ching, M.U. Monir, K J. Environ. Chem. Eng. (2023). https://doi.org/10.1016/j.jece.2023.109610

    Article  Google Scholar 

  16. N. Tyagi, G. Sharma, M. K. Singh, M. Khanuja, FlatChem (2023). https://doi.org/10.1002/bbb.2079

    Article  Google Scholar 

  17. D. Peramune, D.C. Manatunga, R.S. Dassanayake, V. Premalal, R.N. Liyanage, C. Gunathilake, Environ. Res. (2022). https://doi.org/10.1016/j.envres.2022.114242

    Article  PubMed  Google Scholar 

  18. S. Cheikh, A. Imessaoudene, J.-C. Bollinger, A. Hadadi, A. Manseri, A. Bouzaza, A. Assadi, A. Amrane, M. Zamouche, Catalysts (2023). https://doi.org/10.3390/catal13020336

    Article  Google Scholar 

  19. Y. Li, C. Gao, R. Long, Y. Xiong, Mater. Today Chem. (2019). https://doi.org/10.1016/j.mtchem.2023.101392

    Article  Google Scholar 

  20. M. Khan, S.K. Kedia, A. Mishra, D.K. Avasthi, A. Tripathi, Appl. Surf. Sci. (2023). https://doi.org/10.1016/j.apsusc.2023.158106

    Article  Google Scholar 

  21. M. Khan, M.N. Tripathi, A. Tripathi, J. Mater. Res. (2022). https://doi.org/10.1557/s43578-022-00714-y

    Article  Google Scholar 

  22. M. Sharma, A.K. Singh, A.M. Siddiqui, AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0018465

    Article  Google Scholar 

  23. T. Liu, X. Li, Environ. Sci. Technol. (2014). https://doi.org/10.1021/es503777a

    Article  PubMed  PubMed Central  Google Scholar 

  24. C.M. Stephens, R. Bauerle, J. Biol. Chem. (1991). https://doi.org/10.1016/S0021-9258(18)54781-5

    Article  PubMed  Google Scholar 

  25. D. Bacorisen, R. Smith, B. Uberuaga, K. Sickafus, J. Ball, Phys. Rev. (2006). https://doi.org/10.1103/PhysRevB.74.214105

    Article  Google Scholar 

  26. M. Maletin, E.G. Moshopoulou, A. Kontos, E. Devlin, A. Delimitis, V. Zaspalis, L. Nalbandian, J. Eur. Ceram. Soc. (2006). https://doi.org/10.1016/j.jeurceramsoc.2007.02.165

    Article  Google Scholar 

  27. O.D. Dastjerdi, H. Shokrollahi, S.J.I.C.C. Mirshekari, Inorg. Chem. Commun. (2023). https://doi.org/10.1016/j.inoche.2023.110797

    Article  Google Scholar 

  28. M. Sharma, N. Mishra, S. Bansal, A.M. Siddiqui, M. Khanuja, Int. J. Environ. Sci. Technol. (2023). https://doi.org/10.1007/s13762-023-05393-8

    Article  Google Scholar 

  29. R. Sharma, S. Bansal, S. Singhal, RSC Adv. (2015). https://doi.org/10.1039/C4RA13692F

    Article  PubMed  Google Scholar 

  30. P.A. Vinosha, B. Xavier, D. Anceila, S.J. Das, Optik (2018). https://doi.org/10.1016/j.ijleo.2017.11.016

    Article  Google Scholar 

  31. T. Kousar, T.H. Bokhari, A. Altaf, A. Haq, M. Muneer, L.B. Farhat, N. Alwadai, N. Alfryyan, M.I. Jilani, M. Iqbal, M.I. Khan, M.K. Khosa, Catalysts (2022). https://doi.org/10.3390/catal12050553

    Article  Google Scholar 

  32. M. Mozaffari, S. Manouchehri, M.H. Yousefi, J. Amighian, J. Magn. Magn. Mater. (2010). https://doi.org/10.1016/j.jmmm.2009.09.051

    Article  Google Scholar 

  33. S.K. Joshi, A.K. Rai, R.C. Srivastava, J.P. Singh, EEE Trans. Magn. (2001). https://doi.org/10.1109/20.951171

    Article  Google Scholar 

  34. Z.K. Heiba, A.M. Wahba, M.B. Mohamed, J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.07.003

    Article  Google Scholar 

  35. N. Amin, M.S.U. Hasan, Z. Majeed, Z. Latif, M.A. Nabi, K. Mahmood, A. Ali, K. Mehmood, M. Fatima, M.J.C.I. Akhtar, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.08.106

    Article  Google Scholar 

  36. N. Bansal, S. Khan, G. Sharma, D. Rajni, K. Kumar, Singh. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2022.09.284

    Article  Google Scholar 

  37. S. Rath, Chandana, R.P. Anand, K.K. Das, S.D. Sahu, S.K. Kulkarni, Date, N.C. Mishra, J. Appl. Phys. (2002). https://doi.org/10.1063/1.1432474

    Article  Google Scholar 

  38. N.K. Gupta, Y. Ghaffari, S. Kim, J. Bae, K.S. Kim, M. Saifuddin, Sci. Rep. (2020). https://doi.org/10.1038/s41598-020-61930-2

    Article  PubMed  PubMed Central  Google Scholar 

  39. N.P. Barde, V.R. Rathod, P.S. Solanki, N.A. Shah, P.P. Bardapurkar, Appl. Surf. Sci. Adv. (2022). https://doi.org/10.1016/j.apsadv.2022.100302

    Article  Google Scholar 

  40. T.R. Tatarchuk, N.D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, A. Shyichuk, J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2017.10.103

    Article  Google Scholar 

  41. V. Rathod, A.V. Anupama, R. Vijaya Kumar, V.M. Jali, B. Sahoo, Vib. Spectrosc. (2017). https://doi.org/10.1016/j.vibspec.2017.08.008

    Article  Google Scholar 

  42. M. Farid, I. Ahmad, S. Aman, M. Kanwal, G. Murtaza, I. Alia, M. Ishfaq, Int. Nano Lett. https://doi.org/10.1007/s40089-015-0153-8

  43. R. Sharma, P. Thakur, M. Kumar, P.B. Barman, P. Sharma, V. Sharma, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.07.076

    Article  Google Scholar 

  44. B. Vara Prasad, K.V. Ramesh, A. Srinivas, J. Supercond. Novel Magn. (2017). https://doi.org/10.1007/s10948-017-4153-y

    Article  Google Scholar 

  45. G. Sharma, M. Kaur, S. Punj, K. Singh, Biofuels, Bioprod. Bioref. (2020). https://doi.org/10.1016/S0926-860X(01)00610-X

    Article  Google Scholar 

  46. D. Liu, F. Qiu, N. Liu, Y. Cai, Y. Guo, B. Zhao, Y. Qiu, Pore Unconv. Resour. (2022). https://doi.org/10.1016/j.uncres.2022.10.002

    Article  Google Scholar 

  47. Z. Li, J. Lyu, M. Ge, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2699-0

    Article  Google Scholar 

  48. C. Cheng, Z.Y. Kui, Kong, M.R. Khan, Water Air Soil Pollut. (2015). https://doi.org/10.1007/s11270-015-2592-2

    Article  Google Scholar 

  49. J. Gao, S. Wu, Y. Han, F. Tan, Y. Shi, M. Liu, X. Li, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.03.112

    Article  PubMed  Google Scholar 

  50. A. Flores, K. Nesprias, P. Vitale, J. Tasca, A. Lavat, N. Eyler, A. Cañizo, Aust. J. Chem. (2013). https://doi.org/10.1071/CH13435

    Article  Google Scholar 

  51. Y. Wang, H. Zhao, M. Li, Jiaqi Fan, and, G. Zhao, Appl. Catal. B (2014). https://doi.org/10.1016/j.apcatb.2013.09.017

    Article  Google Scholar 

  52. Y. Cheng, S. Zhang, Z. Wang, B. Wang, J. You, R. Guo, H. Zhang, Sep. Purif. Technol. (2023). https://doi.org/10.1016/j.seppur.2023.123971

    Article  Google Scholar 

  53. N. Van Hung, B.T.M. Nguyet, N.H. Nghi, D.Q. Khieu, J. Inorg. Organomet. Polym Mater. (2021). https://doi.org/10.1007/s10904-020-01734-z

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Manika Khanuja (Assoc. Professor) is thankful to the Department of Science and Technology (DST/NM/NB/2018/203(G)(JMI) for providing the grants to complete the innovative research work.

Funding

This work was supported by DST (Grant No. (DST/NM/NB/2018/203(G)).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.S., G.S., N.T., M.K., & A.M.S., Re-sources, M.S., G.S., N.T., M.K., & A.M.S., Writing-original draft preparation, M.S., M.K., & A.M.S., Writing-review and editing, M.S., G.S., N.T., M.K., & A.M.S., Visualization, M.S., G.S., N.T., M.K., supervision, M.K., & A.M.S.

Corresponding author

Correspondence to Manika Khanuja.

Ethics declarations

Conflict of interest

There is no Conflict of Interest.

Additional information

Guest Editor: Jatin Rath.

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Sharma, G., Tyagi, N. et al. Advanced photocatalytic degradation of textile dyes and removal of heavy metal ions from MFe2O4 using photo-Fenton mechanism. J Mater Sci: Mater Electron 35, 497 (2024). https://doi.org/10.1007/s10854-024-12246-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12246-8

Navigation