Skip to main content

Advertisement

Log in

Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, the authors have been interested in synthesizing and studying the novel amorphous thin S50-xGe10CdxTe40 films (SGCT) (0 \(\le\) x \(\le\) 15 at.%) from their glassy bulk compositions. The authors have deposited thin films on pure, transparent, and well-pre-cleaned glass substrates using the thermal evaporation route under a vacuum \(\approx {10}^{-4}\) Pa. Both the deposition rate and film thickness are fixed during depositing SGCT-films at 10 nm/s and 750 nm, respectively. Film samples have been characterized via X-ray diffraction, energy-dispersive X-ray spectroscopy, and optical spectrophotometric measurements for reflection and transmission in the 500–2500 nm spectral range. Based on Minkov's envelope method, the reflection spectra are employed to get the thickness, d, and refractive index, n, of films. The n-values have been found to increase from 2.755 to 3.300 as the Cd-percentage increases. The single effective oscillator model is used to get dispersion energies and parameters. The dispersion energy increases from 16.11 to 16.73 eV, while the single effective oscillator energy decreases from 3.23 eV to 2.65 eV. Tauc’s and Urbach’s energies (Eg and Ee, respectively) have been determined where Eg decreased from 1.60 to 1.31 (eV), while Ee increased from 0.0276 to 0.0644 (eV) as the Cd content was increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

All measurements and obtained data generated and analyzed during this study are included within the text of this article.

References

  1. V. Sharma, S. Sharda, N. Sharma, S.C. Katyal, P. Sharma, Chemical ordering and electronic properties of lone pair chalcogenide semiconductors. Prog. Solid State Chem. 54, 31–44 (2019)

    Google Scholar 

  2. A. Khan, M. Ordu, Exploration of hybrid cladding elements in chalcogenide hollow-core fibers for low-loss mid-infrared transmission. Optik 248, 168226 (2021)

    ADS  Google Scholar 

  3. P. Sharmzzsaa et al., Far-infrared study of amorphous Ge0.17Se0.83−xSbx chalcogenide glasses. J. Alloys Comp. 480(2), 934–937 (2009)

    Google Scholar 

  4. S.A. Khan, M. Zulfequar, Z.H. Khan, M. Ilyas, M. Husain, Optical and electrical properties of glassy Ga10Te90-xSbx alloys. Opt. Mater. 20, 189–196 (2002)

    ADS  Google Scholar 

  5. S. Chahal, K. Ramesh, Glass formation, thermal stability and fragility minimum in Ge-Te-Se glasses. Mater. Res. Bull. 152, 111833 (2022)

    Google Scholar 

  6. K. Ramesh, E.S.R. Gopal, Shift of Rigidity percolation in rapidly quenched Ge-As-Te Chalcogenide glasses. J. Non Oxide Glasses 6, 37–46 (2014)

    Google Scholar 

  7. D. LeCoq, S. Cui, C. Boussard-Pledel, P. Masselin, E. Bychkov, B. Bureau, Telluride glasses with far-infrared transmission up to 35 μm. Opt. Mater. 72, 809–812 (2017)

    ADS  Google Scholar 

  8. M.A. Popescu, Non-Crystalline Chalcogenides, V (8) Springer Science & Business Media, (2001).

  9. A.S. Khomane, Crystallographic and microscopic properties of ternary CdS0.5Se0.5 thin films. Optik 124, 2432–2435 (2013)

    ADS  Google Scholar 

  10. E.G. El-Metwally, N.A. Hegab, M. Mostfa, Linear and non-linear optical dispersion parameters of Te81Ge15Bi4 chalcogenide glass thin films for optoelectronic applications. Phys. B 626, 413556 (2022)

    Google Scholar 

  11. M.M. Alkhamisi, S.Y. Marzouk, A.R. Wassel, A.M. El-Mahalawy, R.A. Almotiri, Multi-functional platform based on amorphous Ge2Sb2Te5 thin films for photo/thermodetection and non-volatile memory applications. Mater. Sci. Semicond. Process. 149, 106856 (2022)

    Google Scholar 

  12. I. Sharma et al., Optical Properties and optoelectrical parameters of the quaternary chalcogenide amorphous Ge15SnxS35-xTe50 films. J. Non-Crystal. Solids 590, 121673 (2022)

    Google Scholar 

  13. S.Y. Shin et al., Impact of local atomic arrangements on ovonic threshold switching of amorphous Ge-As-Se thin films. Scripta Mater. 220, 114899 (2022)

    Google Scholar 

  14. M. Irfan, S. Azam, A. Dahshan, I. El Bakkali, Kh. Nouneh, First-principles study of opto-electronic and thermoelectric properties of SrCdSnX4 (X=S, Se, Te) alkali metal chalcogenides. Comput. Condensed Matter 30, e00625 (2022)

    Google Scholar 

  15. Y.M. Azhniuk et al., Raman study of photoinduced changes in Cd-doped amorphous GeSe2 films. Mater. Today Proc. 62, 5759–5762 (2022)

    Google Scholar 

  16. A.S. Hassanien, A.A. Akl, Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films. Superlattices Microstruct. 89, 153–169 (2016)

    ADS  Google Scholar 

  17. A.M. Shakra, Estimating the Switching phenomenon for Se98Te2 and Se96Te2X2 (X=Zn or Cd) Chalcogenide glasses. J. Non-Crystal. Solids 584, 121514 (2022)

    Google Scholar 

  18. A.S. Hassanien, A.A. Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloys Compounds. 648, 280 (2015)

    Google Scholar 

  19. D. Sahoo, R. Naik, A review on the linear/nonlinear optical properties of Se doped chalcogenide thin films as potential optoelectronic applications. J. Non-Crystal. Solids 597, 121934 (2022)

    Google Scholar 

  20. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50-xSex thin films. J. Alloys Compounds 671, 566–578 (2016)

    Google Scholar 

  21. A. Dahshan, Optical and other physical characteristics of Ge–Se–Cd thin films. Opt. Mater. 32, 247–250 (2009)

    ADS  Google Scholar 

  22. A. El-Denglawey et al., Optical characteristics of thermally evaporated thin a-(Cu2ZnGe)50−xSe50+x Films, ECS. J. Solid State Sci. Technol. 11, 044006 (2022). https://doi.org/10.1149/2162-8777/ac627b

    Article  ADS  Google Scholar 

  23. K.A. Aly, A. Dahshan, I.S. Yahia, Optical constants for Ge30- x Se70Agx (0 ≤ x ≤ 30 at%) thin films based only on their reflectance spectra. Phil. Mag. 92(8), 912–924 (2012)

    ADS  Google Scholar 

  24. A.S. Hassanien, I.M. El-Radaf, A.A. Akl, Physical and optical studies of the novel non-crystalline CuxGe20-xSe40Te40 bulk glasses and thin films. J. Alloys Compounds 849, 156718 (2020)

    Google Scholar 

  25. I. Sharma, A.S. Hassanien, Effect of Ge-addition on physical and optical properties of chalcogenide Pb10Se90-xGex bulk glasses and thin films. J. Non-Crystal. Solids 548, 120326 (2020)

    Google Scholar 

  26. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3(1), 37–46 (1968)

    Google Scholar 

  27. D.A. Minkov, Method for determining the optical constants of a thin film on a transparent substrate. J. Physics D: Appl. Phys. 22, 1157 (1989)

    ADS  Google Scholar 

  28. J.J. Ruiz-Perez, J.M. Gonzalez-Leal, D.A. Minkov, E. Marquez, Method for determining the optical constants of thin dielectric films with variable thickness using only their shrunk reflection spectra. J. Phys. D 34, 2489 (2001)

    ADS  Google Scholar 

  29. J. Ruíz-Pérez, D. Minkov, J. Reyes, J.B. Ramírez-Malo, P. Villares, E. Márquez, Computation of the optical constants of thermally-evaporated thin films of the Ge Se2 chalcogenide glass. Phys. Scr. 53, 76–82 (1996)

    ADS  Google Scholar 

  30. R. Swanepoel, Determination of the thickness and optical constants of amorphous silicon. J. Phys. E: Sci. Instrum. 16(12), 1214–1222 (1983)

    ADS  Google Scholar 

  31. R. Swanepoel, Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J. Phys. E: Sci. Instrum. 17(10), 896–903 (1984)

    ADS  Google Scholar 

  32. A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloys Compounds 685, 733–742 (2016)

    Google Scholar 

  33. A.S. Hassanien, R. Neffati, K.A. Aly, Impact of Cd-addition upon optical properties and dispersion parameters of thermally evaporated CdxZn1-xSe films: discussions on bandgap engineering, conduction, and valence band. Optik 212, 164681 (2020)

    ADS  Google Scholar 

  34. A.S. Hassanien, I. Sharma, K.A. Aly, Linear and nonlinear optical studies of thermally evaporated chalcogenide a-Pb-Se-Ge thin films. Phys. B 613, 412985 (2021)

    Google Scholar 

  35. S. Das, et al., Structural, morphological, and linear/non-linear optical properties tuning in Ag60-xSe40Tex films by thermal annealing for optoelectronics, 592 (2022) 121742.

  36. V. Sadagopan, H.C. Gatos, On the relationship of semiconductor compound properties and the average heats of atomisation. Solid-State Electron. 8, 529–534 (1965)

    ADS  Google Scholar 

  37. A.A. Othman, K.A. Aly, A.M. Abousehly, Effect of Te additions on the optical properties of (As–Sb–Se) thin films. Thin Solid Films 515(7–8), 3507–3512 (2007)

    ADS  Google Scholar 

  38. A.S. Hassanien, Intensive linear and nonlinear optical studies of thermally evaporated amorphous thin Cu-Ge-Se-Te films. J. Non-Crystalline Solids 586, 121563 (2022)

    Google Scholar 

  39. https://www.webelements.com/index.html

  40. A.S. Hassanien, I. Sharma, Band-gap engineering, conduction and valence band positions of thermally evaporated amorphous Ge15-x Sbx Se50 Te35 thin films: Influences of Sb upon some optical characterizations and physical parameters. J. Alloy. Compd. 798, 750–763 (2019)

    Google Scholar 

  41. A.S. Hassanien, A.A. Akl, Microstructure and crystal imperfections of nanosized CdSxSe1-x thermally evaporated thin films. Superlattices Microstruct. 89, 67–81 (2015)

    Google Scholar 

  42. M. Abkowitz, Relaxation induced changes in electrical behavior of glassy chalcogenide semiconductors. Polym. Eng. Sci. 24(14), 1149 (1984)

    Google Scholar 

  43. A.S. Hassanien, A.A. Akl, Estimation of some physical characteristics of chalcogenide bulk Cd50S50−xSex glassy systems. J. Non-Crystal. Solids 428, 112–120 (2015)

    ADS  Google Scholar 

  44. A.S. Hassanien, I. Sharma, A.A. Akl, Physical and optical properties of a-Ge-Sb-Se-Te bulk and film samples: Refractive index and its association with electronic polarizability of thermally evaporated a-Ge15SnxS35-xTe50 films. J. Non-Crystal. Solids 531, 119853 (2020)

    Google Scholar 

  45. S. Yadav, P.K. Bajpai, Effect of substrate on CuS/PVA nanocomposite thin films deposited on glass and silicon substrate. Soft Nanosci. Lett. 8, 9–19 (2018)

    Google Scholar 

  46. S.A. Fayek, M. El-Ocker, A.S. Hassanien, Optical and electrical properties of Ge10+xSe40Te50−x thin film. Mater. Chem. Phys. 70(2), 231–235 (2001)

    Google Scholar 

  47. K.A. Aly, On the study of the optical constants for different compositions of Snx(GeSe)100–x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl. Phys. A 120, 293–299 (2015)

    ADS  Google Scholar 

  48. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity 22(179), 903–922 (1970)

    Google Scholar 

  49. M.S. AlKhalifah, I.M. El Radaf, M.S. El-Bana, New window layer of Cu2CdSn3S8 for thin film solar cells. J. Alloys Compounds 813, 152169 (2020)

    Google Scholar 

  50. G. Soni, R.K. Jangir, Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: Synthesis, optical and electrical properties. Optik 226(1), 165915 (2021)

    ADS  Google Scholar 

  51. T. Halenkovic, M. Baillieul, J. Gutwirth, P. Nemec, V. Nazabal, Amorphous Ge-Sb-Se-Te chalcogenide films fabrication for potential environmental sensing and nonlinear photonics. J. Materiom. 8, 1009–1019 (2022). https://doi.org/10.1016/j.jmat.2022.02.013

    Article  Google Scholar 

  52. A.S. Hassanien, I. Sharma, Optical properties of quaternary a-Ge15-x Sbx Se50 Te35 thermally evaporated thin-films: refractive index dispersion and single oscillator parameters. Optik 200, 163415 (2020)

    ADS  Google Scholar 

  53. J.A. Duffy, Chemical bonding in the oxides of the elements: a new appraisal. J. Solid State Chem. 62, 145–157 (1986)

    ADS  Google Scholar 

  54. J.A. Duffy, Bonding energy levels and bonds in inorganic solids, Longman scientific and technical, England (1990).

  55. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996)

    ADS  Google Scholar 

  56. T.A. Hameed, S.H. Moustafa, H. Shaban, B.A. Mansour, The effect of selenium on the structural, morphology, optical, electrical properties of Cu2Te thin films for thermoelectric and photovoltaic applications. Opt. Mater. 109, 110308 (2020)

    Google Scholar 

  57. J.N. Zemel, J.D. Jensen, R.B. Schoolar, Electrical and optical properties of epitaxial films of PbS PbSe, PbTe, and SnTe. Phys. Rev. A 140, 330 (1965)

    ADS  Google Scholar 

  58. M.N. Azlan, M.K. Halimah, S.Z. Shafinas, W.M. Daud, Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater. Expr. 5(3), 211 (2015)

    Google Scholar 

  59. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I J. Appl. Phys. 79, 1736–1740 (1996)

    ADS  Google Scholar 

  60. R.R. Reddy, K.R. Gopal, K. Narasimhulu, L.S.S. Reddy, K.R. Kumar, C.V.K. Reddy, S.N. Ahmed, Opt. Mater. 31, 209 (2008)

    ADS  Google Scholar 

  61. A.S. Hassanien, I. Sharma, Dielectric properties, Optoelectrical parameters and electronic polarizability of thermally evaporated a-Pb-Se-Ge thin films. Phys. B 622, 413330 (2021)

    Google Scholar 

  62. K. Pradeesh, C.J. Oton, V.K. Agotiya, M. Raghavendra, G.V. Prakash, Optical properties of Er3+ doped alkali chlorophosphate glasses for optical amplifiers. Opt. Mater. 31, 155–160 (2008)

    ADS  Google Scholar 

  63. A.S. Hassanien, H.R. Alamri, I.M. El-Radaf, Impact of film thickness on optical properties and optoelectrical parameters of novel CuGaGeSe4 thin films synthesized by electron beam deposition. Opt. Quant. Electr. 52(7), 1–18 (2020)

    Google Scholar 

  64. S.H. Wemple, M. Di-Domenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1350 (1971)

    ADS  Google Scholar 

  65. S.H. Wemple, Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3776 (1973)

    ADS  Google Scholar 

  66. I. Solomen, M.P. Schmidt, C. Senemaud, M.D. Khodja, Band structure of carbonated amorphous silicon studied by optical, photoelectron, and x-ray spectroscopy. Phys. Rev. B 38, 13263 (1988)

    ADS  Google Scholar 

  67. K. Goksen, N.M. Gasanly, H. Ozkan, Optical absorption and reflection studies of Tl4InGa3S8 layered single crystals. Acta Phys. Pol., A 112, 93 (2007)

    ADS  Google Scholar 

  68. N.F. Mott, E.A. Davis, States in the gap and recombination in amorphous semiconductors. Philos. Magaz. 32, 961–996 (1975). https://doi.org/10.1080/14786437508221667

    Article  ADS  Google Scholar 

  69. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  70. K. Tanaka, Optical properties and photoinduced changes in amorphous As-S films. Thin Solid Films 66, 271–279 (1980)

    ADS  Google Scholar 

  71. S.A. Khan, F.S. Al-Hazmi, S. Al-Heniti, A.S. Faidah, A.A. Al-Ghamdi, Effect of cadmium addition on the optical constants of thermally evaporated amorphous Se–S–Cd thin films. Curr. Appl. Phys. 10, 145 (2010)

    ADS  Google Scholar 

  72. J. Rui Xie, Su, Ya Liu, Guo Liejin, Optical, structural and photoelectrochemical properties of CdS1-xSex semiconductor films produced by chemical bath deposition Intern. J. Hydrogen Energy 39, 3517–3527 (2014)

    Google Scholar 

  73. Q. Shen, T. Toyoda, Characterization of nanostructured TiO2 electrodes sensitized with CdSe quantum dots using photoacoustic and photoelectrochemical current methods. Japan J. Appl. Phys. 43, 2946 (2004)

    ADS  Google Scholar 

  74. Q. Shen, K. Katayama, T. Sawada, T. Toyoda, Characterization of electron transfer from CdSe quantum dots to nanostructured TiO2 electrode using a near-field heterodyne transient grating technique. Thin Solid Films 516, 5927 (2008)

    ADS  Google Scholar 

  75. M.S. El-Bana, S.S. Fouad, Optoelectrical properties of Ge10Se90 and Ge10Se85Cu5 thin films illuminated by laser beams. Appl. Phys. A 124, 124–132 (2018)

    ADS  Google Scholar 

  76. A.K. Walton, T.S. Moss, Determination of refractive index and correction to effective electron mass in PbTe and PbSe. Proc. Phys. Soc. 81, 509–513 (1963)

    ADS  Google Scholar 

  77. B. Barış, H.G. Özdemir, N. Tuğluoğlu, S. Karadeniz, Ö.F. Yüksel, Z. Kişnişci, Optical dispersion and dielectric properties of rubrene organic semiconductor thin film. J. Mater. Sci. 25, 3586–3593 (2014)

    Google Scholar 

  78. K.A. Aly, A. Dahshan, Y. Saddeek, Optical properties of as-prepared and irradiated In–Cd–Se thin films. J. Mater. Sci. (2022). https://doi.org/10.1007/s10854-022-08215-8

    Article  Google Scholar 

  79. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    ADS  Google Scholar 

  80. H. Fritzsche, J. Tauc, in Amorphous and Liquid Semiconductors. ed. by J. Tauc (Plenum Press, London and New York, 1974), p.254

    Google Scholar 

  81. I. Studenyak, M. Kranjec, M. Kurik, Urbach rule in solid state physics. Intern. J. Optics Appl. 4(3), 76–83 (2014)

    Google Scholar 

  82. T. Skettrup, Urbach’s rule derived from thermal fluctuations in the band-gap energy. Phys. Rev. B 18, 2622 (1978)

    ADS  Google Scholar 

  83. S.K. Pal, N. Mehta, H.E. Atyia, S.S. Fouad, Investigation of optical band-gap and related optical properties in thin-films of Ge containing Se-Te-Sn alloys. J. Non-Crystal. Solids 551, 120399 (2021)

    Google Scholar 

  84. A.S. Hassanien, A.A. Akl, Optical characterizations and refractive index dispersion parameters of annealed TiO2 thin films synthesized by RF-sputtering technique at different flow rates of the reactive oxygen gas. Phys. B 576, 411718 (2020)

    Google Scholar 

  85. R.T. Sanderson, Electronegativity and bond energy. J. Am. Chem. Soc. 105, 2259 (1983)

    Google Scholar 

  86. Inference of Sn addition on optical properties of the novel thermally evaporated thin films of a-Ge15Te50S35-xSnx and physical properties of their glasses, Materials Chemistry and Physics, 126887,  https://doi.org/10.1016/j.matchemphys.2022.126887

  87. S. Das, P. Priyadarshini, D. Alagarasan, S. Vardhrajperumal, R. Ganesan, R. Naik, Structural, morphological, and linear/non-linear optical properties tuning in Ag60-xSe40Tex films by thermal annealing for optoelectronics. J. Non-Crystal. Solids. 592, 121742 (2022)

    Google Scholar 

Download references

Acknowledgements

The author (H.I. Elsaeedy) extends her appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Groups Project under Grant Number (RGP.2/135/43).

Author information

Authors and Affiliations

Authors

Contributions

The first and second authors participated together in everything related to this research work: Conceptualization, Methodology, Formal analysis, Writing the original draft, Investigation, Supervision, Project administration, Resources, Data curation, Software, Visualization, Validation, Writing review & editing. While the third and fourth authors participated in each of the following items: Project administration, Resources, final reviewing. All authors have read, revised, agree, and approved this final version of the article.

Corresponding author

Correspondence to Ahmed Saeed Hassanien.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanien, A.S., Aly, K.A., Elsaeedy, H.I. et al. Optical characterization and dispersion discussions of the novel thermally evaporated thin a-S50-xGe10CdxTe40 films. Appl. Phys. A 128, 1021 (2022). https://doi.org/10.1007/s00339-022-06127-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06127-2

Keywords

Navigation