Skip to main content
Log in

Optimization of the linear and nonlinear optical properties of amorphous As30Te69Ga1 thin films by the annealing process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films (~ 150 nm) of amorphous As30Te69Ga1 were prepared by the thermal evaporation method on glass substrates from the bulk As30Te69Ga1 sample. XRD analysis reveals the glassy nature of thermally evaporated As30Te69Ga1 thin films, while the annealed samples are crystalline. The linear and nonlinear optical properties of As30Te69Ga1 thin films are tuned by the annealing process and the optical investigations carried out by analysis of the transmittance and reflectance spectra for thin films. The bandgap (Eg) and Urbach (Ee) energies of annealed samples reveal opposite trends along with annealing temperature (TA) where Eg reduced as TA rises (393 ≤ TA (K) ≤ 433), while increases for further increase in TA (TA > 433 K). The complex refractive index, extension coefficient, optical and electrical conductivities, nonlinear optical susceptibility, optical surface resistance, thermal emission, etc. are significantly affected by TA and the wavelength of electromagnetic waves. The results provide knowledge about the electronic band structure of As30Te69Ga1 which emphasizes that such films qualify for various thermos-optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. A. Burian, P. Lecante, A. Mosset, J. Galy, J.M. Tonnerre, D. Raoux, Differential anomalous X-ray scattering studies of amorphous Cd59As41 and Cd26As74. J. Non-Cryst. Solids 212(1), 23–39 (1997). https://doi.org/10.1016/S0022-3093(96)00649-7

  2. X.H. Zhang, J.L. Adam, B. Bureau, Chalcogenide glasses, in Springer Handbook of Glass, ed. by J.D. Musgraves, J. Hu, L. Calvez (Springer, Cham, 2019), pp. 525–552. https://doi.org/10.1007/978-3-319-93728-1_15

  3. R. Tomova, R. Stoycheva-Topalova, A. Burof, Thin-film sensors based on evaporated chalcogenide glasses. J. Mater. Sci. Mater. Electron. 14(10–12), 843–845 (2003). https://doi.org/10.1023/A:1026102631596

  4. A.V. Kolobov, J. Tominaga, Chalcogenide glasses as prospective materials for optical memories and optical data storage. J. Mater. Sci. Mater. Electron. 14(10–12), 677–680 (2003). https://doi.org/10.1023/A:1026166701612

  5. S. Naghizade, S.M. Sattari-Esfahlan, An optical five channel demultiplexer-based simple photonic crystal ring resonator for WDM applications. J. Opt. Commun. 41(1), 37–43 (2019). https://doi.org/10.1515/joc-2017-0129

  6. H. Endo, H. Hoshino, H. Ikemoto, T. Miyanaga, Semiconductor-metal transition in liquid As–Te mixtures. J. Phys. Condens. Matter 12(28), 6077–6099 (2000). https://doi.org/10.1088/0953-8984/12/28/306

  7. A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, A.A. Abu-Sehly, M.A. Abdel-Rahim, M.M. Hafz, Influence of annealing temperature on the structural and optical properties of  As30Te70 thin films. Mater. Sci. Pol. 35(2), 335–345 (2017). https://doi.org/10.1515/msp-2017-0052

  8. J.C. Rouland, R. Ollitrault-Fichet, J. Flahaut, J. Rivet, R. Ceolin, The As–Te system: phase diagram and glass separation. Thermochim. Acta 161(1), 189–200 (1990). https://doi.org/10.1016/0040-6031(90)80300-N

  9. J.R. Eifert, E.A. Peretti, The phase diagram of the system tellurium/arsenic. J. Mater. Sci. 3(3), 293–296 (1968). https://doi.org/10.1007/BF00741964

  10. A.M. Abd-Elnaiem, M.A. Abdel-Rahim, S. Moustafa, Comparative investigation of electronic properties of As-70 at.% Te thin films: Influence of Ga doping and annealing temperature. J. Non-Cryst. Solids 540, 120062 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120062

  11. A.M. Abd-Elnaiem, S. Moustafa, Optical properties of annealed As30Te67Ga3 thin films grown by thermal evaporation. Process. Appl. Ceram. 12(3), 209–217 (2018). https://doi.org/10.2298/PAC1803209A

  12. M. Dongol, Optical absorption and structural properties of as-deposited and thermally annealed As-Te-Ga thin films. Egypt. J. Solids 25(1), 33–47 (2002)

  13. M. Dongol, M.M. Hafz, M. Abou-Zied, A.F. Elhady, Effect of composition on the electrical and structural properties of As–Te–Ga thin films. Appl. Surf. Sci. 185(1–2), 1–10 (2001). https://doi.org/10.1016/S0169-4332(01)00394-4

  14. V.C. Selvaraju, S. Asokan, V. Srinivasan, Electrical switching studies on As40Te60–xSex and As35Te65–xSex glasses. Appl. Phys. A 77(1), 149–153 (2003). https://doi.org/10.1063/1.5038712

  15. N. Manikandan, S. Asokan, Network topological thresholds in gallium doped As–Te glasses – electrical and thermal investigations. J. Non-Cryst. Solids 353(13–15), 1247–1250 (2007). https://doi.org/10.1016/j.jnoncrysol.2006.10.055

  16. T. Usuki, O. Uemura, S. Konno, Y. Kameda, M. Sakurai, Structural and physical properties of Ag–As–Te glasses. J. Non-Cryst. Solids 293, 799–805 (2001). https://doi.org/10.1016/S0022-3093(01)00791-8

  17. G.A. Amin, S.M. El-Sayed, H.M. Saad, F.M. Hafez, M. Abd-El-Rahman, The radiation effect on optical and morphological properties of Ag–As–Te thin films. Radiat. Meas. 42(3), 400–406 (2007). https://doi.org/10.1016/j.radmeas.2006.12.006

  18. A.A. Dunaev, Z.U. Borisova, M.D. Mikhailov, I.V. Privalova, Domaine de vitrification et proprietes des verres du systeme As-Te-Ga. Fiz. Khim. Stekla 43, 346–350 (1978)

  19. Z. Borisova, in Glassy Semiconductors (Springer Science & Business Media, 2013). https://doi.org/10.1007/978-1-4757-0851-6

  20. P.G. Rustamov, B.K. Babaeva, V.B. Cherstvova, Investigation of the Interaction in the Ga-As-Te System and Obtaining of the Indium Chalcogenoantimonides [in Russian], in Khalkogenidy. Vyp. 3. (Nauk. Dumka Publish., Kiev, 1974), pp. 106–111

  21. Z. Zang, A. Nakamura, J. Temmyo, Nitrogen doping in cuprous oxide films synthesized by radical oxidation at low temperature. Mater. Lett. 92, 188–191 (2013). https://doi.org/10.1016/j.matlet.2012.10.083

  22. X. Zeng, T. Zhou, C. Leng, Z. Zang, M. Wang, W. Hu, X. Tang, S. Lu, L. Fang, M. Zhou, Performance improvement of perovskite solar cells by employing a CdSe quantum dot/PCBM composite as an electron transport layer. J. Mater. Chem. A 5(33), 17499–17505 (2017). https://doi.org/10.1039/C7TA00203C

  23. M. Wang, H. Wang, W. Li, X. Hu, K. Sun, Z. Zang, Defect passivation using ultrathin PTAA layers for effcient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J. Mater. Chem. A 7(46), 26421–26428 (2019). https://doi.org/10.1039/C9TA08314F

  24. S. Cao, H. Wang, H. Li, J. Chen, Z. Zang, Critical role of interface contact modulation in realizing low-temperature fabrication of effcient and stable CsPbIBr2 perovskite solar cells. Chem. Eng. J. 394, 124903 (2020). https://doi.org/10.1016/j.cej.2020.12490

  25. B. Yang, M. Wang, X. Hu, T. Zhou, Z. Zang, Highly effcient semitransparent CsPbIBr2 perovskite solar cells via low-temperature processed In2S3 as electron-transport-layer. Nano Energy 57, 718–727 (2019).  https://doi.org/10.1016/j.nanoen.2018.12.097

  26. B.T. Kolomiets, B.V. Pavlov, Change in forbidden-band width of arsenic chalcogenides in transition from glass to crystal. Sov. phys. Semiconduct. 1(3), 350 (1967)

  27. F. Kosek, Z. Cimpl, M.D. Mikhailov, E.A. Karpova, Electrical and optical properties of the As–Te–In and Ge–Se–In chalcogenide systems. J. Non-Cryst. Solids 86(3), 265–270 (1986). https://doi.org/10.1016/0022-3093(86)90014-1

  28. M.M. Hafz, A.H. Moharram, A.A. Abu-Sehly, The effect of silver incorporation on the properties of co-evaporated arsenic telluride thin films. Appl. Surf. Sci. 115(3), 203–210 (1997). https://doi.org/10.1016/S0169-4332(96)01088-4

  29. S.M. El-Sayed, H.M. Saad, Effect of composition and forming parameter on evaporated Ag–As–Te thin films. Mater. Chem. Phys. 107(1), 39–43 (2008). https://doi.org/10.1016/j.matchemphys.2007.06.037

  30. M.A. Abdel-Rahim, Annealing dependence of optical and electrical properties of Ga8As46Te46 thin films. J. Phys. Chem. Solids 60(1), 29–39 (1999). https://doi.org/10.1016/S0022-3697(98)00250-9

  31. A.M. Abd-Elnaiem, M. Mohamed, R.M. Hassan, M.A. Abdel-Rahim, A.A. Abu-Sehly, M.M. Hafiz, Structural and optical characterization of annealed As30Te60Ga10 thin films prepared by thermal evaporation technique. Mater. Sci. Pol. 36(2), 193–202 (2018). https://doi.org/10.1515/msp-2018-0022

  32. M. Mansour, M. Alaa, R.M. Abd-Elnaiem, M.A. HassanAbdel-Rahim, M.M. Hafiz, Non-isothermal crystallization kinetics of As30Te60Ga10 glass. Appl. Phys. A 123(8), 511 (2017). https://doi.org/10.1007/s00339-017-1111-2

  33. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978 (1939). https://doi.org/10.1103/PhysRev.56.978

  34. F.T.L. Muniz, M.A.R. Miranda, C. Morilla dos Santos, J.M. Sasaki, The Scherrer equation and the dynamical theory of Xray diffraction. Acta Crystallogr. A Found. Adv. 72(3), 385–390 (2016). https://doi.org/10.1107/S205327331600365X

  35. U. Holzwarth, N. Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6(9), 534 (2011). https://doi.org/10.1038/nnano.2011.145

  36. A.M. Abd-Elnaiem, R.M. Hassan, H.R. Alamri, H.S. Assaedi, Comparative investigation of linear and nonlinear optical properties of As–70 at% Te thin films: influence of Ga content. J. Mater. Sci. Mater. Electron. 31(16), 13204–13218 (2020). https://doi.org/10.1007/s10854-020-03872-z

  37. T.S. Moss, Optical Properties of Semiconductors (Butterworths Scientifc, London, 1959). https://doi.org/10.1016/0022-3697%2859%2990017-4

  38. E. Márquez, J.B. Ramirez-Malo, J. Fernández-Peña, R. Jimé-nez-Garay, P.J.S. Ewen, A.E. Owen, On the optical properties of wedge-shaped thin films of Ag-photodoped  As30S70 glass. Opt. Mater. 2(3), 143–150 (1993). https://doi.org/10.1016/0925-3467(93)90005-L

  39. Gh. Abbady, A. Qasem, A.M. Abd-Elnaiem, Optical parameters and electronic properties for the transition of the amorphous-crystalline phase in Ge20Te80 thin films. J. Alloys Compd. 842, 155705 (2020). https://doi.org/10.1016/j.jallcom.2020.155705

  40. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22(179), 903–922 (1970). https://doi.org/10.1080/14786437008221061

  41. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

  42. M.M. Hafz, A.A. Othman, M.M. El-Nahass, A.T. Al-Motasem, Composition and thermal-induced effects on the optical constants of Ge20Se80–xBix thin films. Physica B 390(1–2), 348–355 (2007). https://doi.org/10.1016/j.physb.2006.08.036

  43. D. Sahoo, P. Priyadarshini, A. Aparimita, D. Alagarasan, R. Ganesan, S. Varadharajaperumal, R. Naik, Role of annealing temperature on optimizing the linear and nonlinear optical properties of As40Se50Ge10 films. RSC Adv. 10(45), 26675–26685 (2020). https://doi.org/10.1039/D0RA04763E

  44. D.S. GillRobert, W. Eason, C. Zaldo, H.N. Rutt, N.A. Vainos, Characterisation of Ga-La-S chalcogenide glass thin-film optical waveguides, fabricated by pulsed laser deposition. J. Non-Cryst. Solids. 191, 321–326 (1995). https://doi.org/10.1016/0022-3093(95)00319-3

  45. H. El-Zahed, Optical absorption study of amorphous CuxGe20−xTe80 films as a function of composition. Physica B 307, 95–104 (2001). https://doi.org/10.1016/S0921-4526(01)00644-5

  46. S.H. Wemple, M. Didomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971). https://doi.org/10.1103/PhysRevB.3.1338

  47. V. DasDamodara, R. Chandra Mallik, Study of scattering of charge carriers in thin films of (Bi0.25Sb0.75)2Te3 alloy with 2% excess Te. Mater. Res. Bull. 37(12), 1961–1971 (2002). https://doi.org/10.1016/S0025-5408(02)00810-3

  48. H. Ticha, L. Tichy, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides. J. Optoelectron. Adv. Mater 4(2), 381–386 (2002)

  49. K. Tanaka, Optical properties and photoinduced changes in amorphous As–S films. Thin Solid Films 66(3), 271–279 (1980). https://doi.org/10.1016/0040-6090(80)90381-8

  50. F. Yakuphanoglu, C. Viswanathan, Electrical conductivity and single oscillator model properties of amorphous CuSe semiconductor thin film. J. Non-Cryst. Solids 353(30–31), 2934–2937 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.06.055

  51. M.M. Hafz, H.M. Kotb, M.A. Dabban, A.Y. Abdel-Latif, Optical properties of Cd20Se80–xMx (M: Zn, In, and Sn) thin film alloys. Opt. Laser Technol. 49, 188–195 (2013). https://doi.org/10.1016/j.optlastec.2013.01.005

  52. V. Kumar, B.S.R. Sastry, Heat of formation of ternary chalcopyrite semiconductors. J. Phys. Chem. Solids 66(1), 99–102 (2005). https://doi.org/10.1016/j.jpcs.2004.08.034

  53. D.R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093–2097 (1962). https://doi.org/10.1103/PhysRev.128.2093

  54. J.D. Patterson, B.C. Bailey, Optical properties of solids, in Solid-State Physics (Springer, Cham, 2018), pp. 649–704. https://doi.org/10.1007/978-3-319-75322-5_10

  55. R.H. French, H. Müllejans, D.J. Jones, Optical properties of aluminum oxide: determined from vacuum ultraviolet and electron energy-loss spectroscopies. J. Am. Ceram. Soc. 81(10), 2549–2557 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02660.x

  56. R.H. French, Origins and applications of London dispersion forces and Hamaker constants in ceramics. J. Am. Ceram. Soc. 83(9), 2117–2146 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01527.x

  57. S.K. Tripathy, Refractive indices of semiconductors from energy gaps. Opt. Mater. 46, 240–246 (2015). https://doi.org/10.1016/j.optmat.2015.04.026

  58. T.S. Moss, A relationship between the refractive index and the infra-red threshold of sensitivity for photoconductors. Proc. Phys. Soc. Sect. B 63(3), 167–176 (1950). https://doi.org/10.1088/0370-1301/63/3/302

  59. N.M. Ravindra, S. Auluck, V.K. Srivastava, On the Penn gap in semiconductors. Phys. Status Solidi B 93(2), K155–K160 (1979). https://doi.org/10.1002/pssb.2220930257

  60. P. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infrared Phys. Technol. 35(4), 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

  61. P.J.L. Herve, L.K.J. Vandamme, Empirical temperature dependence of the refractive index of semiconductors. J. Appl. Phys. 77(10), 5476–5477 (1995). https://doi.org/10.1063/1.359248

  62. C.C. Wang, Empirical relation between the linear and the third-order nonlinear optical susceptibilities. Phys. Rev. B 2(6), 2045 (1970). https://doi.org/10.1103/PhysRevB.2.2045

  63. M. Reidinger, M. Rydzek, C. Scherdel, M. Arduini-Schuster, J. Manara, Low-emitting transparent coatings based on tin doped indium oxide applied via a sol–gel routine. Thin Solid Films 517(10), 3096–3099 (2009). https://doi.org/10.1016/j.tsf.2008.11.078

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa M. Abd-Elnaiem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, R.M., Moustafa, S. & Abd-Elnaiem, A.M. Optimization of the linear and nonlinear optical properties of amorphous As30Te69Ga1 thin films by the annealing process. J Mater Sci: Mater Electron 31, 20043–20059 (2020). https://doi.org/10.1007/s10854-020-04526-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04526-w

Navigation