Skip to main content
Log in

Structural, resistive switching and charge transport behaviour of (1-x)La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\).(x)ZnO composite system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With the increase in data-driven frameworks, the demand for non-volatile memory has increased and resistive switching-based memory is one of them. In this study, the structural, charge transport and the current vs. voltage (I-V) behaviour of (1-x)La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\).(x)ZnO composite systems were investigated and observed that, they exhibit bipolar resistive switching behaviour. The oxygen vacancy, oxygen ions and interfacial layers play an important role in the resistive switching behaviour. From the XPS analysis, it is observed that the oxygen-deficient region increases with the increasing concentration of ZnO. The sample with x = 0.050 shows better resistive switching behaviour and high ON/OFF current ratio as compared with the x = 0.005 and 0.010 samples. The Ohmic and Schottky emissions are found to be responsible for the conduction mechanism. The shifting in the metal–insulator transition temperature (TMI) towards the low temperature is observed from the resistivity vs. temperature plot with the increasing concentration of the ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang, Q. Xia, J.J. Yang, Resistive switching materials for information processing. Nat. Rev. Mater. 5, 1–23 (2020)

    Google Scholar 

  2. Xiao-Di. Huang, Yi. Li, Hao-Yang. Li, Kan-Hao. Xue, Xingsheng Wang, Xiang-Shui. Miao, Forming-free, fast, uniform, and high endurance resistive switching from cryogenic to high temperatures in W/AlO\(_x\)/Al\(_2\)O\(_3\)/Pt bilayer memristor. IEEE Electron Device Lett. 41(4), 549–552 (2020)

    ADS  Google Scholar 

  3. G. Venkataiah, Y. Shirahata, M. Itoh, T. Taniyama, Manipulation of magnetic coercivity of Fe film in Fe/BaTiO\(_3\) heterostructure by electric field. Appl. Phys. Lett. 99(10), 102506 (2011)

    ADS  Google Scholar 

  4. Ahmed Badreldin, Aya E. Abusrafa, Ahmed Abdel-Wahab, Oxygen-deficient perovskites for oxygen evolution reaction in alkaline media: a review. Emerg. Mater. 3(5), 567–590 (2020)

    Google Scholar 

  5. W. Yang, Q. Shi, T. Miao, Q. Li, P. Cai, H. Liu, H. Lin et al., Achieving large and nonvolatile tunable magnetoresistance in organic spin valves using electronic phase separated manganites. Nat. Commun. 10(1), 1–10 (2019)

    Google Scholar 

  6. Jiahong Wen, Xiaoyu Zhao, Qian Li, Sheng Zhang, Dunhui Wang, Du. Youwei, Multilevel resistance switching effect in Au/La\(_{2/3}\)Ba\(_{1/3}\)MnO\(_3\)/Pt heterostructure manipulated by external fields. J. Magn. Magn. Mater. 452, 184–187 (2018)

    ADS  Google Scholar 

  7. K. Kumari, S.J. Ray, A.D. Thakur, Resistive switching phenomena: a probe for the tracing of secondary phase in manganite. Appl. Phys. A 128(5), 1–11 (2022)

    Google Scholar 

  8. K. Kumari, S. Kar, A.D. Thakur, S.J. Ray, Role of an oxide interface in a resistive switch. Curr. Appl. Phys. 35, 16–23 (2022)

    ADS  Google Scholar 

  9. K. Kumari, S. Majumder, A.D. Thakur, S.J. Ray, Temperature-dependent resistive switching behaviour of an oxide memristor. Mater. Lett. 303, 130451 (2021)

    Google Scholar 

  10. Rajeh Mundle, Christian Carvajal, Aswini K. Pradhan, ZnO/Al: ZnO transparent resistive switching devices grown by atomic layer deposition for memristor applications. Langmuir 32(19), 4983–4995 (2016)

    Google Scholar 

  11. A. Hezam, K. Namratha, Q.A. Drmosh, B.N. Chandrashekar, K.K. Sadasivuni, Z.H. Yamani, C. Cheng, K. Byrappa, Heterogeneous growth mechanism of ZnO nanostructures and the effects of their morphology on optical and photocatalytic properties. CrystEngComm 19(24), 3299–3312 (2017)

    Google Scholar 

  12. M. Ibrahim, K. Kannan, H. Parangusan, S. Eldeib, O. Shehata, M. Ismail, R. Zarandah, K.K. Sadasivuni, Enhanced corrosion protection of epoxy/ZnO-NiO nanocomposite coatings on steel. Coatings 10(8), 783 (2020)

    Google Scholar 

  13. D. Thomas, A. Thomas, A.E. Tom, K.K. Sadasivuni, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, Highly selective gas sensors from photo-activated ZnO/PANI thin films synthesized by mSILAR. Synth. Met. 232, 123–130 (2017)

    Google Scholar 

  14. G.U. Siddiqui, M.M. Rehman, Y.J. Yang, K.H. Choi, A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. J. Mater. Chem. C 5(4), 862–871 (2017)

    Google Scholar 

  15. D. A. Khakhulin, Z. E. Vakulov, V. A. Smirnov, R. V. Tominov, J.-G. Yoon, O. A. Ageev. “Resistive switching in ZnO/ZnO: In nanocomposite.” In Journal of Physics: Conference Series. 917(9). (2017)

  16. S. Vallabhapurapu, L.D. Varma Sangani, M. Ghanashyam Krishna, J. Das, C. Tu, S. Du, A. Srinivasan, Resistive switching behaviour in PMMA/Al: ZnO composite films. Acta Phys. Pol. A. 134(1), 68–70 (2018)

    ADS  Google Scholar 

  17. K. Kumari, A. Kumar, D.K. Kotnees, J. Balakrishnan, A.D. Thakur, S.J. Ray, Structural and resistive switching behaviour in lanthanum strontium manganite-reduced graphene oxide nanocomposite system. J. Alloys Compd. 815, 152213 (2020)

    Google Scholar 

  18. Fatih Gul, Hasan Efeoglu, Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor. Superlattices Microstruct. 101, 172–179 (2017)

    ADS  Google Scholar 

  19. Anustup Sadhu, Sayan Bhattacharyya, Enhanced low-field magnetoresistance in La\(_{0.71}\)Sr\(_{0.29}\)MnO\(_3\) nanoparticles synthesized by the nonaqueous sol-gel route. Chem. Mater. 26(4), 1702–1710 (2014)

    Google Scholar 

  20. S. Majumder, K. Kumari, S.J. Ray, Pulsed voltage induced resistive switching behavior of copper iodide and La0. 7Sr0. 3MnO3 nanocomposites. Mater. Lett. 302, 130339 (2021)

    Google Scholar 

  21. K. Kumari, A. Kumar, A.D. Thakur, S.J. Ray, Charge transport and resistive switching in a 2D hybrid interface. Mater. Res. Bull. 139, 111195 (2021)

    Google Scholar 

  22. K. Kumari, A.D. Thakur, S.J. Ray, The effect of graphene and reduced graphene oxide on the resistive switching behavior of La0. 7Ba0. 3MnO3. Mater. Today Commun. 26, 102040 (2021)

    Google Scholar 

  23. Kumar Navin, Rajnish Kurchania, Structural, magnetic and transport properties of the La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\)-ZnO nanocomposites. J. Magn. Magn. Mater. 448, 228–235 (2018)

    ADS  Google Scholar 

  24. Kinner, Robert, Abdul-Majeed Azad, G. Srinivasan, G. Sreenivasulu, and Menka Jain. “ZnO/LSMO Nanocomposites for Energy Harvesting.” arXiv preprint arXiv:1709.01797 (2017)

  25. Margo Staruch, Haiyong Gao, Pu-Xian. Gao, Menka Jain, Low-field magnetoresistance in La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\): ZnO composite film. Adv. Funct. Mater. 22(17), 3591–3595 (2012)

    Google Scholar 

  26. D. Deb, D. Nath, R.J. Choudhary, J.N. Roy, P. Dey, Magneto-tunable photoresponse in ZnO-rGO/La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\)/ITO heterostructure: An opto-spintronic phenomenon. Phys. Lett. A 446, 128271 (2022)

    Google Scholar 

  27. Bibekananda Das, Prahallad Padhan, The suppression of spin-orbit coupling effect by the ZnO layer of La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\)/ZnO heterostructures grown on (001) oriented Si restores the negative magnetoresistance. Nanoscale 13(9), 4871–4879 (2021)

    Google Scholar 

  28. A. Kumar, M. Das, V. Garg, B.S. Sengar, M.T. Htay, S. Kumar, A. Kranti, S. Mukherjee, Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett. 110(25), 253509 (2017)

    ADS  Google Scholar 

  29. Elke Beyreuther, Stefan Grafström, Lukas M. Eng, Christian Thiele, Kathrin Dörr, XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. Phys. Rev. B 73(15), 155425 (2006)

    ADS  Google Scholar 

  30. A. Kumar, K. Kumari, S.J. Ray, A.D. Thakur, Graphene mediated resistive switching and thermoelectric behavior in lanthanum cobaltate. J. Appl. Phys. 127(23), 235103 (2020)

    ADS  Google Scholar 

  31. J. Gao, S.Y. Dai, T.K. Li, Electronic states of epitaxial thin films of La 0.9 Sn 0.1 MnO 3 and La 0.9 Ca 0.1 MnO 3. Phys. Rev. B 67(15), 153403 (2003)

    ADS  Google Scholar 

  32. S.S. Kekade, P.A. Yadav, B.R. Thombare, P.R. Dusane, D.M. Phase, R.J. Choudhari, S.I. Patil, Effect of sintering temperature on electronic properties of nanocrystalline La\(_{0.7S}\)Sr\(_{0.3}\)MnO\(_3\). Mater. Res. Express. 6(9), 096108 (2019)

    ADS  Google Scholar 

  33. R.P. Vasquez, X-ray photoelectron spectroscopy study of Sr and Ba compounds. J. Electron Spectrosc. Relat. Phenom. 56(3), 217–240 (1991)

    Google Scholar 

  34. P.R. Emtage, W. Tantraporn, Schottky emission through thin insulating films. Phys. Rev. Lett. 8(7), 267 (1962)

    ADS  Google Scholar 

  35. G. Xu, N. Gao, C. Lu, W. Wang, Z. Ji, C. Bi, Z. Han et al., Bulk-like electrical properties induced by contact-limited charge transport in organic diodes: revised space charge limited current. Adv. Electr. Mater. 4(5), 1700493 (2018)

    Google Scholar 

  36. N. Alam, S. Majumder, S.J. Ray, D. Sarma, A wide bandgap semiconducting magnesium hydrogel: moisture harvest, iodine sequestration, and resistive switching. Langmuir (2022). https://doi.org/10.1021/acs.langmuir.2c01464

    Article  Google Scholar 

  37. S. Pandey, C. Biswas, T. Ghosh, J.J. Bae, P. Rai, G.H. Kim, K.J. Thomas, Y.H. Lee, P. Nikolaev, S. Arepalli, Transition from direct to Fowler-Nordheim tunneling in chemically reduced graphene oxide film. Nanoscale 6(6), 3410–3417 (2014)

    ADS  Google Scholar 

  38. J.R. Yeargan, H.L. Taylor, The Poole-Frenkel effect with compensation present. J. Appl. Phys. 39(12), 5600–5604 (1968)

    ADS  Google Scholar 

  39. Yu. Zhou, Xinde Zhu, Shengli Li, Effect of particle size on magnetic and electric transport properties of La\(_{0.67}\)Sr\(_{0.33}\)MnO\(_3\) coatings. Phys. Chem. Chem. Phys. 17(46), 31161–31169 (2015)

    Google Scholar 

  40. Kalipada Das, B. Satpati, I. Das, The effect of artificial grain boundaries on magneto-transport properties of charge ordered-ferromagnetic nanocomposites. RSC Adv. 5(35), 27338–27346 (2015)

    ADS  Google Scholar 

  41. A. De Andres, M. Garcia-Hernandez, J.L. Martinez, Conduction channels and magnetoresistance in polycrystalline manganites. Phys. Rev. B 60(10), 7328 (1999)

    ADS  Google Scholar 

  42. Kenn Kubo, Nagao Ohata, A quantum theory of double exchange. I. J. Phys. Soc. Jpn. 33(1), 21–32 (1972)

    ADS  Google Scholar 

  43. G.J. Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Intrinsic electrical transport and magnetic properties of La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_3\) and La\(_{0.67}\)Ca\(_{0.33}\)MnO\(_3\) MOCVD thin films and bulk material. Phys. Rev. B 53(21), 14434 (1996)

    ADS  Google Scholar 

  44. D.C. Worledge, L. Miéville, T.H. Geballe, On-site Coulomb repulsion in the small polaron system La\(_{1-x}\)Ca\(_x\)MnO\(_3\). Phys. Rev. B 57(24), 15267 (1998)

    ADS  Google Scholar 

  45. J.M. De Teresa, M.R. Ibarra, J. Blasco, J. Garcia, C. Marquina, P.A. Algarabel, Z. Arnold, K. Kamenev, C. Ritter, R. Von Helmolt, Spontaneous behavior and magnetic field and pressure effects on La\(_{2/3}\)Ca\(_{1/3}\)MnO\(_3\) perovskite. Phys. Rev. B 54(2), 1187 (1996)

    ADS  Google Scholar 

Download references

Acknowledgements

K. Kumari acknowledges the Department of Science and Technology (DST), India for providing financial support through INSPIRE fellowship (Ref: DST/ INSPIRE/03/2015/005282) program. SJR acknowledges the financial support received from the Department of Science and Technology, India through the INSPIRE scheme (Ref: DST/INSPIRE/04/2015/003087), ECR Grant (Ref: ECR/2017/002223), CRG Grant (Ref: CRG/2019/003289) and from UGC-DAE Consortium for Scientific Research (Ref: CSR-IC-263, CRS-M-321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Ray.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 346 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, K., Thakur, A.D. & Ray, S.J. Structural, resistive switching and charge transport behaviour of (1-x)La\(_{0.7}\)Sr\(_{0.3}\)MnO\(_3\).(x)ZnO composite system. Appl. Phys. A 128, 992 (2022). https://doi.org/10.1007/s00339-022-06084-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06084-w

Keywords

Navigation