Skip to main content
Log in

Green synthesis of TiO2@MWCNTs composites by pulsed laser ablation in liquid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles and TiO2@MWCNTs nanocomposites were created using pulsed Nd: YAG laser ablation in liquid. The former was prepared by laser ablation of Ti target immersed in water with laser energy of 120 mJ at 100 pulses, while the latter was achieved by irradiating a mixture of as-prepared TiO2NPs, and different concentrations ratios (8, 16, and 25) % of carbon nanotubes with laser energy of 100 mJ at 25 pulses. Fourier transformed infrared spectroscopy (FTIR), Raman spectroscopy, X-ray diffraction (XRD), and Transmission electron microscopy (TEM) analysis exhibited the variation in the structure of the nanocomposites. The FTIR results demonstrated the formation of nanocomposites. Raman spectra results displayed that the crystalline phase of nanocomposites contains two major phases: anatase and brookite. XRD results revealed the diffraction peaks of the titanium oxide for both anatase and brookite phases, in addition to the carbon nanotube peaks. TEM images confirmed that the titanium oxide nanoparticles are attached to the walls of MWCNTs, and completely covered by graphene sheets. The energy bandgap value of TiO2NPs decreased from (3.7–3.35) eV with the addition of different concentration ratios of MWCNTs. Zeta potential results of the nanocomposites showed an increase as the concentration ratios of MWCNTs increased. Hence, this method is ideal for creating contamination-free nanostructures of various morphologyic and sizes that can be used in a variety of field in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are presented within the article.

References

  1. F.H. Abdulrazzak, Enhance photocatalytic activity of TiO2 by carbon nanotubes. Int. J. ChemTech Res. 9(3), 431–443 (2016)

    Google Scholar 

  2. M.B. Askari, Z.T. Banizi, M. Seifi, S.B. Dehaghi, P. Veisi, Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2 /MWCNT nanocomposite. Optik 149, 447–454 (2017)

    Article  ADS  Google Scholar 

  3. Z. Wu, D. Lee, M.F. Rubner, R.E. Cohen, Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks. Small 3(8), 1445–1451 (2007)

    Article  Google Scholar 

  4. K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, S. Albukhaty, M.A. Ibrahem, T. Al-Muhimeed, A.A. AlObaid, Antibacterial activity of TiO2 nanoparticles prepared by one-step laser ablation in liquid. Appl. Sci. 11(10), 4623 (2021)

    Article  Google Scholar 

  5. W. Huang, Y. Chen, C. Yang, Y. Situ, H. Huang, PH-driven phase separation: simple routes for fabricating porous TiO2 film with superhydrophilic and anti-fog properties. Ceram. Int. 41(6), 7573–7581 (2015)

    Article  Google Scholar 

  6. X.Z. Li, H. Liu, L.F. Cheng, H.J. Tong, Photocatalytic oxidation using a new catalyst TiO2 microsphere for water and wastewater treatment. Environ. Sci. Technol. 37(17), 3989–3994 (2003)

    Article  ADS  Google Scholar 

  7. W. Choi, Pure and modified TiO2 photocatalysts and their environmental applications. Catal. Surv. Asia 10(1), 16–28 (2006)

    Article  Google Scholar 

  8. I.F. Hasan, K.S. Khashan, A.A. Hadi, Study of the effect of laser energy on the structural and optical properties of TiO2 NPs prepared by PLAL technique. J. Appl. Sci. Nanotechnol. 2(1), 11–19 (2022)

    Article  Google Scholar 

  9. H. Dong, C. Qu, T. Zhang, L. Zhu, W. Ma, Synthesis of multi-walled carbon nanotubes/TiO2 composite and its photocatalytic activity. J. Nanosci. Nanotechnol. 16(3), 2646–2651 (2016)

    Article  Google Scholar 

  10. R. Hameed, K.S. Khashan, G.M. Sulaiman, Preparation and characterization of graphene sheet prepared by laser ablation in liquid. Mater. Today: Proc. 20, 535–539 (2020)

    Google Scholar 

  11. A. Addie, K.S. Khashaan, J. Saimon, A. Hassan, Impact of laser energy on features of carbon nanostructure materials prepared by a one-step pulsed laser ablation in water. Iraqi J. Sci. 62(7), 2197–2203 (2021)

    Article  Google Scholar 

  12. M.A. Ibrahem, K.S. Khashan, N.L. Hussain, A.A. Hadi, Preparation of carbon nanoparticles by laser ablation in water for photodetector applications. AIP Conf. Proc. 2372, 080023 (2021)

    Article  Google Scholar 

  13. S.A. Mohammed, K.S. Khashan, M.S. Jabir, F.A. Abdulameer, G.M. Sulaiman, M.S. Al-Omar, H.A. Mohammed, A.A. Hadi, R.A. Khan, Copper oxide nanoparticle-decorated carbon nanoparticle composite colloidal preparation through laser ablation for antimicrobial and antiproliferative actions against breast cancer cell line, MCF-7. BioMed Res. Int. 2022, 1–13 (2022)

    Article  Google Scholar 

  14. F.A. AlMalki, K.S. Khashan, M.S. Jabir, A.A. Hadi, G.M. Sulaiman, F.A. Abdulameer, S. Albukhaty, H. Al-Karagoly, J. Albaqami, Eco-friendly synthesis of carbon nanoparticles by laser ablation in water and evaluation of their antibacterial activity. J. Nanomater. 2022, 1–8 (2022)

    Article  Google Scholar 

  15. X. Huang, K. Wang, K. Jia, X. Liu, Preparation of TiO2 –MWCNT core/shell heterostructures containing a single MWCNT and their electromagnetic properties. Compos. Interfaces 22(5), 343–351 (2015)

    Article  Google Scholar 

  16. S. Cravanzola, S.M. Jain, F. Cesano, A. Damin, D. Scarano, Development of a multifunctional TiO2/MWCNT hybrid composite grafted on a stainless steel grating. RSC Adv. 5(125), 103255–103264 (2015)

    Article  ADS  Google Scholar 

  17. D.R. Sarker, M.N. Uddin, M. Elias, Z. Rahman, R.K. Paul, I.A. Siddiquey, M.A. Hasnat, M.R. Karim, M.A. Arafath, J. Uddin, P-doped TiO2-MWCNTs nanocomposite thin films with enhanced photocatalytic activity under visible light exposure. Clean. Eng. Technol. 6, 100364 (2022)

    Article  Google Scholar 

  18. B. Ahmmad, Y. Kusumoto, S. Somekawa, M. Ikeda, Carbon nanotubes synergistically enhance photocatalytic activity of TiO2. Catal. Commun. 9(6), 1410–1413 (2008)

    Article  Google Scholar 

  19. W. Wang, P. Serp, P. Kalck, J.L. Faria, Photocatalytic degradation of phenol on MWNT and titania composite catalysts prepared by a modified sol–gel method. Appl. Catal. B 56(4), 305–312 (2005)

    Article  Google Scholar 

  20. S. Aryal, C.K. Kim, K.W. Kim, M.S. Khil, H.Y. Kim, Multi-walled carbon nanotubes/TiO2 composite nanofiber by electrospinning. Mater. Sci. Eng., C 28(1), 75–79 (2008)

    Article  Google Scholar 

  21. J. Cho, S. Schaab, J.A. Roether, A.R. Boccaccini, Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J. Nanopart. Res. 10(1), 99–105 (2008)

    Article  ADS  Google Scholar 

  22. H. Yu, X. Quan, S. Chen, H. Zhao, TiO2—multiwalled carbon nanotube heterojunction arrays and their charge separation capability. J. Phys. Chem. C 111(35), 12987–12991 (2007)

    Article  Google Scholar 

  23. K.S. Khashan, A. Hadi, M. Mahdi, M.K. Hamid, Nanosecond pulse laser preparation of InZnO (IZO) nanoparticles NPs for high-performance photodetector. Appl. Phys. A 125(1), 1–7 (2019)

    Article  ADS  Google Scholar 

  24. A.G. Al-Dulimi, A.Z. Al-Saffar, G.M. Sulaiman, K.A. Khalil, K.S. Khashan, H.S. Al-Shmgani, E.M. Ahmed, Immobilization of l-asparaginase on gold nanoparticles for novel drug delivery approach as anti-cancer agent against human breast carcinoma cells. J. Market. Res. 9(6), 15394–15411 (2020)

    Google Scholar 

  25. K.S. Khashan, S.F. Abbas, Characterization of InN nanoparticles prepared by laser as photodetector. Int. J. Mod. Phys. B 30(14), 1650080 (2016)

    Article  ADS  Google Scholar 

  26. B. Gao, G.Z. Chen, G.L. Puma, Carbon nanotubes/titanium dioxide (CNTs/ TiO2) nanocomposites prepared by conventional and novel surfactant wrapping sol–gel methods exhibiting enhanced photocatalytic activity. Appl. Catal. B 89(3–4), 503–509 (2009)

    Article  Google Scholar 

  27. M. DellʼAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015)

    Article  Google Scholar 

  28. E. Solati, Z. Aghazadeh, D. Dorranian, Effects of liquid ablation environment on the characteristics of TiO2 nanoparticles. J. Cluster Sci. 31(5), 961–969 (2020)

    Article  Google Scholar 

  29. E. Giorgetti, M.M. Miranda, S. Caporali, P. Canton, P. Marsili, C. Vergari, F. Giammanco, TiO2 nanoparticles obtained by laser ablation in water: influence of pulse energy and duration on the crystalline phase. J. Alloy. Compd. 643, S75–S79 (2015)

    Article  Google Scholar 

  30. A. Hamad, L. Li, Z. Liu, A comparison of the characteristics of nanosecond, picosecond and femtosecond lasers generated Ag, TiO2 and Au nanoparticles in deionised water. Appl. Phys. A 120(4), 1247–1260 (2015)

    Article  ADS  Google Scholar 

  31. F. Barreca, N. Acacia, E. Barletta, D. Spadaro, G. Curro, F. Neri, Small size TiO2 nanoparticles prepared by laser ablation in water. Appl. Surf. Sci. 256(21), 6408–6412 (2010)

    Article  ADS  Google Scholar 

  32. P. Thakur, B. Tan, K. Venkatakrishnan, Multiphase titanium oxide nanomaterial for augmented vis–NIR photon absorption. Sol. Energy Mater. Sol. Cells 152, 161–169 (2016)

    Article  Google Scholar 

  33. B.F. Mohazzab, B. Jaleh, M. Nasrollahzadeh, Z. Issaabadi, R.S. Varma, Laser ablation-assisted synthesis of GO/ TiO2 /Au nanocomposite: applications in K3 [Fe (CN) 6] and Nigrosin reduction. Mol. Catal. 473, 110401 (2019)

    Article  Google Scholar 

  34. N. Mintcheva, P. Srinivasan, J.B.B. Rayappan, A.A. Kuchmizhak, S. Gurbatov, S.A. Kulinich, Room-temperature gas sensing of laser-modified anatase TiO2 decorated with Au nanoparticles. Appl. Surf. Sci. 507, 145169 (2020)

    Article  Google Scholar 

  35. H.H. Bahjat, R.A. Ismail, G.M. Sulaiman, H.A. Mohammed, M. Al-Omar, S.A. Mohammed, R.A. Khan, Preparation of iron oxide and titania-based composite, core-shell populated, nanoparticulates material by two-step LASER ablation in aqueous media as antimicrobial and anticancer agents. Bioinorg. Chem. Appl. 2022, 1–19 (2022)

    Article  Google Scholar 

  36. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl. Sci. 7(1), 49 (2017)

    Article  Google Scholar 

  37. N.E. Jasbi, E. Solati, D. Dorranian, Role of laser fluence in decoration of graphene nanosheets with TiO2 nanoparticles by pulsed laser ablation method. J. Alloy. Compd. 861, 157956 (2021)

    Article  Google Scholar 

  38. X. Li, T. Wang, Qu. Guangzhou, D. Liang, Hu. Shibin, Enhanced degradation of azo dye in wastewater by pulsed discharge plasma coupled with MWCNTs- TiO2 /γ-Al 2O3 composite photocatalyst. J. Environ. Manage. 172, 186–192 (2016)

    Article  Google Scholar 

  39. C. Leyva-Porras, A. Toxqui-Teran, O. Vega-Becerra, M. Miki-Yoshida, M. Rojas-Villalobos, M. García-Guaderrama, J.A. Aguilar-Martínez, Low-temperature synthesis and characterization of anatase TiO2 nanoparticles by an acid assisted sol–gel method. J. Alloys Compd. 647, 627–636 (2015)

    Article  Google Scholar 

  40. D.K. Singh, P.K. Iyer, P.K. Giri, Diameter dependence of interwall separation and strain in multiwalled carbon nanotubes probed by X-ray diffraction and Raman scattering studies. Diam. Relat. Mater. 19(10), 1281–1288 (2010)

    Article  ADS  Google Scholar 

  41. Tachibana, M. Characterization of laser-induced defects and modification in carbon nanotubes by Raman spectroscopy. Physical and chemical properties of carbon nanotubes, pp.31–52, (2013).

  42. K.D. Shitole, R.K. Nainani, P. Thakur, Preparation, characterisation and photocatalytic applications of TiO2-MWCNTs composite. Def. Sci. J. 63(4), 435–441 (2013)

    Article  Google Scholar 

  43. S. Muduli, W. Lee, V. Dhas, S. Mujawar, M. Dubey, K. Vijayamohanan, S.H. Han, S. Ogale, Enhanced conversion efficiency in dye-sensitized solar cells based on hydrothermally synthesized TiO2—MWCNT nanocomposites. ACS Appl. Mater. Interfaces. 1(9), 2030–2035 (2009)

    Article  Google Scholar 

  44. T. Ling Tan, S. Bee Abd Hamid, C. Wei Lai, Modification of multi-walled carbon nanotubes with nanoparticles for high photocatalytic activity. Curr. Nanosci. 11(4), 504–508 (2015)

    Article  ADS  Google Scholar 

  45. Indora V., Yadav S., Mohan S. Optical and structural analysis of sol-gel derived TiO2/MWCNT nanocomposites. In: AIP conference proceedings, vol. 2220, no. 1, p. 020110. AIP Publishing LLC (2020).

  46. A. Aqel, K.M. Abou El-Nour, R.A. Ammar, A. Al-Warthan, Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arab. J. Chem. 5(1), 1–23 (2012)

    Article  Google Scholar 

  47. A. Bassil, P. Puech, L. Tubery, W. Bacsa, E. Flahaut, Controlled laser heating of carbon nanotubes. Appl. Phys. Lett. 88(17), 173113 (2006)

    Article  ADS  Google Scholar 

  48. Y. Lin, Q. Zhang, Y. Deng, Q. Wu, X.P. Ye, S. Wang, G. Fang, Fabricating graphene and nanodiamonds from lignin by femtosecond laser irradiation. ACS Omega 6(49), 33995–34002 (2021)

    Article  Google Scholar 

  49. H. Dong, C. Qu, T. Zhang, L. Zhu, W. Ma, Synthesis of multiwalled carbon nanotubes/TiO2 composite and its photocatalytic activity. J. Nanosci. Nanotechnol. 16(3), 2646–2651 (2016)

    Article  Google Scholar 

  50. S.D. Delekar, A.G. Dhodamani, K.V. More, T.D. Dongale, R.K. Kamat, S.F. Acquah et al., Structural and optical properties of nanocrystalline TiO2 with multiwalled carbon nanotubes and its photovoltaic studies using Ru (II) sensitizers. ACS Omega 3(3), 2743–2756 (2018)

    Article  Google Scholar 

  51. V.B. Koli, A.G. Dhodamani, A.V. Raut, N.D. Thorat, S.H. Pawar, S.D. Delekar, Visible light photo-induced antibacterial activity of TiO2-MWCNTs nanocomposites with varying the contents of MWCNTs. J. Photochem. Photobiol. A 328, 50–58 (2016)

    Article  Google Scholar 

  52. A. Wang, Y. Wang, W. Yu, Z. Huang, Y. Fang, L. Long, Y. Song, M.P. Cifuentes, M.G. Humphrey, L. Zhang, J. Shao, TiO2 –multiwalled carbon nanotube nanocomposites: hydrothermal synthesis and temporally-dependent optical properties. RSC Adv. 6(24), 20120–20127 (2016)

    Article  ADS  Google Scholar 

  53. M.M. Gui, S.P. Chai, B.Q. Xu, A.R. Mohamed, Visible-lightdriven MWCNT@ TiO2 core–shell nanocomposites and the roles of MWCNTs on the surface chemistry, optical properties and reactivity in CO2 photo reduction. RSC Adv. 4(46), 24007–24013 (2014)

    Article  ADS  Google Scholar 

  54. M.M. Gui, S.P. Chai, B.Q. Xu, A.R. Mohamed, Enhanced visible light responsive MWCNT/TiO2 core–shell nanocomposites as the potential photocatalyst for reduction of CO2 into methane. Sol. Energy Mater. Sol. Cells 122, 183–189 (2014)

    Article  Google Scholar 

  55. M.R. Mohammad, D.S. Ahmed, M.K. Mohammed, Synthesis of Ag-doped TiO2 nanoparticles coated with carbon nanotubes by the sol–gel method and their antibacterial activities. J. Sol-Gel. Sci. Technol. 90(3), 498–509 (2019)

    Article  Google Scholar 

  56. K.M. Lim, J.H. Lee, Electrical conductivity and compressive strength of cement paste with multiwalled carbon nanotubes and graphene nanoplatelets. Appl. Sci. 12(3), 1160 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Applied Science department, University of Technology—Iraq.

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khawla S. Khashan.

Ethics declarations

Competing interests

We do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khashan, K.S., Hadi, A.A. & Hasan, I.F. Green synthesis of TiO2@MWCNTs composites by pulsed laser ablation in liquid. Appl. Phys. A 128, 835 (2022). https://doi.org/10.1007/s00339-022-05984-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05984-1

Keywords

Navigation