Skip to main content
Log in

Photocatalytic performance of graphene-based Cr-substituted β ZnS nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nitrogen-doped 2D graphene nanosheets were wrapped on the sphalerite structured pure and Cr substituted ZnS nanospheres synthesized by hydrothermal method successfully and examined as novel photocatalysts to the photodegradation of dye mixtures as realistic pollutants. 2D graphene nanosheets were successfully synthesized by Hummer’s method using natural coal. XRD, Raman spectroscopy, and XPS were correlated to each other, and vacancy defects were found to increase in graphene/4% Cr:ZnS nanocomposites due to the existence of stacking faults, microstrain, dislocation density, grain boundaries, point defects, doping, and graphitic edges. The drastic change was noticed in C 1 s spectra of graphene and graphene/pure ZnS, graphene/4% Cr:ZnS nanocomposites owing to the stress, strain property of graphene, and development of vacancy defects. N-doped 2D graphene nanosheets were decorated on the surface of ZnS nanospheres which was confirmed by FESEM. The addition of 2D graphene nanosheets results in the enhancement of dislocation density, microstrain, and stacking faults in the samples. From XRD, the dislocation density, microstrain, and stacking faults were decreased due to the doping of Cr into the ZnS lattice. From XPS, it was verified that the highest vacancy defects were scrutinized in graphene/4% Cr:ZnS nanocomposite due to the ionic radius of Cr there were more vacancies were created into ZnS lattice. The dyes of methylene blue, para nitrophenol and, Congo red were mixed into 100 ml of water under solar light for degradation. The photocatalytic efficiencies were found to be 57.36, 62.79, 59.68, 84.49, and 51.16% for pure ZnS, 4% Cr:ZnS, graphene/pure ZnS, graphene/4% Cr:ZnS, and graphene, respectively. Morphological, chemical, and optical properties of graphene nanosheets based on Cr substituted ZnS nanocomposites were studied before and after the photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.-Q. Cao, T.-Q. Zi, X.-R. Zhao, C. Liu, Q. Ren, J.-B. Fang, W.-M. Li, A.-D. Li, Sci. Rep. 10, 13437 (2020)

    Article  ADS  Google Scholar 

  2. A. Pareek, A. Gopalakrishnan, P.H. Borse, J. Phys. Conf. Ser. 755, 012006 (2016)

    Article  Google Scholar 

  3. Z. Ali, H. Waheed, A. G. Kazi, A. Hayat, M. Ahmad, in Plant Metal Interaction, edited by P. Ahmad (Elsevier, 2016), p. 411.

  4. C. Zhu, C. Liu, Y. Zhou, Y. Fu, S. Guo, H. Li, S. Zhao, H. Huang, Y. Liu, Z.H. Kang, Appl. Catal. B Environ. 216, 114 (2017)

    Article  Google Scholar 

  5. E.S. Agorku, M.A. Mamo, B.B. Mamba, A.C. Pandey, A.K. Mishra, J. Porous Mater. 22, 47 (2015)

    Article  Google Scholar 

  6. A.M. Golsheikh, H.N. Lim, R. Zakaria, N.M. Huang, RSC Adv. 5, 12726 (2015)

    Article  ADS  Google Scholar 

  7. P. Singh, P. Shandilya, P. Raizada, A. Sudhaik, A. Rahmani-Sani, A. Hosseini-Bandegharaei, Arab. J. Chem. 13, 3498 (2020)

    Article  Google Scholar 

  8. N.A.F. Al-Rawashdeh, O. Allabadi, M.T. Aljarrah, ACS Omega 5, 28046 (2020)

    Article  Google Scholar 

  9. O. Akhavan, E. Ghaderi, J. Phys. Chem. C 113, 20214 (2009)

    Article  Google Scholar 

  10. A. Alharbi, R.K. Shah, A. Sayqal, A. Subaihi, A.A. Alluhaybi, F.K. Algethami, A.M. Naglah, A.A. Almehizia, H.A. Katouah, H.M. Youssef, Alex. Eng. J. 60, 2167 (2021)

    Article  Google Scholar 

  11. C. Djebbari, E. Zouaoui, N. Ammouchi, C. Nakib, D. Zouied, K. Dob, SN Appl. Sci. 3, 255 (2021)

    Article  Google Scholar 

  12. R. Shrivastava, R.K. Upreti, P.K. Seth, U.C. Chaturvedi, FEMS Immunol. Med. Microbiol. 34, 1 (2002)

    Article  Google Scholar 

  13. M. Costa, Crit. Rev. Toxicol. 27, 431 (1997)

    Article  Google Scholar 

  14. H. Sun, J. Brocato, M. Costa, Curr. Environ. Health Rep. 2, 295 (2015)

    Article  Google Scholar 

  15. G. Quievryn, E. Peterson, J. Messer, A. Zhitkovich, Biochemistry 42, 1062 (2003)

    Article  Google Scholar 

  16. J.M. Jacob, A. Sinharoy, P.N.L. Lens, Environ. Technol. 1, 1 (2020)

    Google Scholar 

  17. H.R. Pouretedal, H. Beigy, M.H. Keshavarz, Environ. Technol. 31, 1183 (2010)

    Article  Google Scholar 

  18. H. Pouretedal, A. Sohrabi, J. Iran. Chem. Soc. 13, 73 (2015)

    Article  Google Scholar 

  19. C.L. Torres-Martínez, R. Kho, O.I. Mian, R.K. Mehra, J. Colloid Interface Sci. 240, 525 (2001)

    Article  ADS  Google Scholar 

  20. H. Pouretedal, H. Motamedi, A. Amiri, Desal. Water Treat. 44, 92 (2012)

    Article  Google Scholar 

  21. M. Mehrabian, Z. Esteki, Optik Int. J. Light Electron Opt. 130, 1168 (2016)

    Article  Google Scholar 

  22. R. Chauhan, A. Kumar, R.P. Chaudhary, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 113, 250 (2013)

    Article  ADS  Google Scholar 

  23. H.R. Azimi, M. Ghoranneviss, S.M. Elahi, M.R. Mahmoudian, F. Jamali-Sheini, R. Yousefi, Front. Mater. Sci. 10, 385 (2016)

    Article  Google Scholar 

  24. T. Mahvelati-Shamsabadi, E.K. Goharshadi, M. Shafaee, Z. Niazi, Sep. Purif. Technol. 202, 326 (2018)

    Article  Google Scholar 

  25. D.V. Dake, N.D. Raskar, V.A. Mane, R.B. Sonpir, E. Stathatos, K. Asokan, P.D. Babu, B.N. Dole, Appl. Phys. A 126, 640 (2020)

    Article  ADS  Google Scholar 

  26. J. Zhu, X. Liu, X. Zhou, Q. Yang, Comput. Mater. Sci. 188, 110179 (2021)

    Article  Google Scholar 

  27. N.D. Raskar, D.V. Dake, V.A. Mane, E. Stathatos, U. Deshpande, B. Dole, J. Mater. Sci. Mater. Electron. 30, 10886 (2019)

    Article  Google Scholar 

  28. V.V. Kutwade, K.P. Gattu, A.S. Dive, M.E. Sonawane, D.A. Tonpe, R. Sharma, J. Mater. Sci. Mater. Electron. 32, 6475 (2021)

    Article  Google Scholar 

  29. H.A. Khawal, N.D. Raskar, U.P. Gawai, B.N. Dole, AIP Conf. Proc. 1728, 020431 (2016)

    Article  Google Scholar 

  30. M. Jothibas, C. Manoharan, S.J. Jeyakumar, P. Praveen, I.K. Punithavathy, J.P. Richard, Sol. Energy 159, 434 (2018)

    Article  ADS  Google Scholar 

  31. S. Pan, X. Liu, J. Solid State Chem. 191, 51 (2012)

    Article  ADS  Google Scholar 

  32. K. Ganesan, S. Ghosh, N.G. Krishna, S. Ilango, M. Kamruddin, A.K. Tyagi, Phys. Chem. Chem. Phys. 18, 22160 (2016)

    Article  Google Scholar 

  33. K. Yao, G. Zhang, Y. Lin, J. Gong, H. Na, T. Tang, Polym. Chem. 6, 389 (2015)

    Article  Google Scholar 

  34. X. Pu, H.-B. Zhang, X. Li, C. Gui, Z.-Z. Yu, RSC Adv. 4, 15297 (2014)

    Article  ADS  Google Scholar 

  35. F.T. Johra, J.-W. Lee, W.-G. Jung, J. Ind. Eng. Chem. 20, 2883 (2014)

    Article  Google Scholar 

  36. N.G. Shang, P. Papakonstantinou, S. Sharma, G. Lubarsky, M. Li, D.W. McNeill, A.J. Quinn, W. Zhou, R. Blackley, Chem. Commun. 48, 1877 (2012)

    Article  Google Scholar 

  37. L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Jiang, Y. Wang, X. Chen, Nanoscale 7, 15427 (2015)

    Article  ADS  Google Scholar 

  38. Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu, Y. Qiang, Y. Qian, Sci. Rep. 6, 26146 (2016)

    Article  ADS  Google Scholar 

  39. D. Kumari, L. Sheikh, S. Bhattacharya, T.J. Webster, S. Nayar, Int. J. Nanomed. 12, 3605 (2017)

    Article  Google Scholar 

  40. X. Zhang, M. Zhang, Y. Tian, J. You, C. Yang, J. Su, Y. Li, Y. Gao, H. Gu, RSC Adv. 8, 10698 (2018)

    Article  ADS  Google Scholar 

  41. R. Hawaldar, P. Merino, M.R. Correia, I. Bdikin, J. Grácio, J. Méndez, J.A. Martín-Gago, M.K. Singh, Sci. Rep. 2, 682 (2012)

    Article  ADS  Google Scholar 

  42. Y. Zhang, N. Zhang, Z.-R. Tang, Y.-J. Xu, ACS Nano 6, 9777 (2012)

    Article  Google Scholar 

  43. F. Li, X. Jiang, J. Zhao, S. Zhang, Nano Energy 16, 488 (2015)

    Article  Google Scholar 

  44. R. Viswanath, H.S.B. Naik, Y.K.G. Somalanaik, P.K.P. Neelanjeneallu, K.N. Harish, M.C. Prabhakara, J. Nanotechnol. 2014, 924797 (2014)

    Article  Google Scholar 

  45. R. Boulkroune, M. Sebais, Y. Messai, B. Riadh, M. Schmutz, C. Blanck, O. Halimi, B. Boudine, Bull. Mater. Sci. 42 (2019).

  46. A. Jrad, W. Naffouti, T.B. Nasr, S. Ammar, N. Turki-Kamoun, J. Mater. Sci. Mater. Electron. 28, 1463 (2017)

    Article  Google Scholar 

  47. R. Lafi, I. Montasser, H. Amor, Adsorpt. Sci. Technol. 37, 026361741881922 (2018)

    Google Scholar 

  48. N. Kumpan, T. Poonsawat, L. Chaicharoenwimolkul, S. Pornsuwan, E. Somsook, RSC Adv. 7, 5759 (2017)

    Article  ADS  Google Scholar 

  49. M. Almoussawi, A.M. Abdallah, K. Habanjar, R. Awad, Mater. Res. Express 7, 105011 (2020)

    Article  Google Scholar 

  50. V. Natarajan, P.N. Kumar, M. Ahmad, J.P. Sharma, A.K. Chaudhary, P.K. Sharma, J. Colloid Interface Sci. 586, 39 (2021)

    Article  ADS  Google Scholar 

  51. J.H. Kim, H. Rho, J. Kim, Y.-J. Choi, J.-G. Park, J. Raman Spectrosc. 43, 906 (2012)

    Article  ADS  Google Scholar 

  52. Y.C. Cheng, C.Q. Jin, F. Gao, X.L. Wu, W. Zhong, S.H. Li, P.K. Chu, J. Appl. Phys. 106, 123505 (2009)

    Article  ADS  Google Scholar 

  53. Y.-T. Nien, I.-G. Chen, Appl. Phys. Lett. 89, 261906 (2006)

    Article  ADS  Google Scholar 

  54. Y.Y. Luo, G.T. Duan, G.H. Li, Appl. Phys. Lett. 90, 201911 (2007)

    Article  ADS  Google Scholar 

  55. X. Li, K. Peng, H. Chen, Z. Wang, Sci. Rep. 8, 11663 (2018)

    Article  ADS  Google Scholar 

  56. M. AlKausor, D. Chakrabortty, Inorgan. Chem. Commun. 129, 108630 (2021)

    Article  Google Scholar 

  57. K.-Q. Lu, Y.-H. Li, Z.-R. Tang, Y.-J. Xu, ACS Materials Au (2021).

  58. P.S. Liu, G.F. Chen, in Porous materials. ed. by P.S. Liu, G.F. Chen (Butterworth-Heinemann, Boston, 2014), p. 493

    Chapter  Google Scholar 

  59. L. Wang, Y. Hu, F. Qi, L. Ding, J. Wang, X. Zhang, Q. Liu, L. Liu, H. Sun, P. Qu, ACS Appl. Mater. Interfaces. 12, 8157 (2020)

    Article  Google Scholar 

  60. E. Rokhsat, O. Akhavan, Appl. Surf. Sci. 371, 590 (2016)

    Article  ADS  Google Scholar 

  61. O. Akhavan, Carbon 49, 11 (2011)

    Article  Google Scholar 

  62. O. Akhavan, ACS Nano 4, 4174 (2010)

    Article  Google Scholar 

  63. O. Akhavan, M. Abdolahad, A. Esfandiar, M. Mohatashamifar, J. Phys. Chem. C 114, 12955 (2010)

    Article  Google Scholar 

  64. N. Raskar, D. Dake, H. Khawal, U. Deshpande, K. Asokan, B. Dole, SN Appl. Sci. 2, 1403 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the generous support of the Inter-University Accelerator Centre (IUAC), New Delhi, for financial assistance through Project no. IUAC/XIII.7/UFR-67305, India and Prof. S. S. Shah for his effective scientific discussion and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. N. Dole.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dake, D.V., Raskar, N.D., Mane, V.A. et al. Photocatalytic performance of graphene-based Cr-substituted β ZnS nanocomposites. Appl. Phys. A 128, 276 (2022). https://doi.org/10.1007/s00339-022-05407-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05407-1

Keywords

Navigation