Skip to main content
Log in

Structural, magnetic transition and magnetocolaric properties of La1−xLixMn1−yFeyO3 (x = 0.1, 0.2 and y = 0, 0.1) manganites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermal, structural and magnetocaloric properties of La1−xLixMn1−yFeyO3 (x = 0.1, 0.2 and y = 0, 0.1) powders were investigated in this study for application in magnetic refrigeration systems, using thermogravimetric analysis, X-ray diffraction analysis and superconducting quantum interference device magnetometer. All samples were synthesized by flash combustion method using glycine as fuels and nitrates as precursors. The Li and Fe doped samples exhibited a rhombohedral structure and an R\(\overline{3}\)c space group. The increase of Li concentration to 20%, leads to the formation of LiMn2O4 spinel phase as a secondary phase. The ferromagnetic–paramagnetic transition was inferred from the temperature dependence of the magnetization. The magnetic entropy change (−ΔSM) has been calculated using the magnetization isotherms data. However, the increase of La substitution by Li from 10 to 20% leads to a decrease of the Curie temperature TC from 215 to 75 K accompanied with a maximum magnetic entropy change \(/ - \Delta {\text{S}}_{{\text{M}}}^{{{\text{max}}}} /\) from 3.63 to 1.52 J.Kg−1 K−1 under a magnetic field change of 5 T. Moreover, by the 10% Fe doping, there is a clear trend of decreasing the Curie temperature, the magnetic entropy change and the relative cooling efficiency. Therefore, in the vicinity of TC, (−ΔSM) reached a maximum value of 1.54 J.Kg−1 K−1 for La0.9Li0.1Mn0.9Fe0.1O3 and 0.96 J.Kg−1 K−1 for La0.8Li0.2Mn0.9Fe0.1O3. According to the Arrott plots results, a second-order ferromagnetic–paramagnetic transition was found for all the doped samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.A. Gschneidner Jr., V.K. Pecharsky, Magnetocaloric materials. Annu. Rev. Mater. Sci. 30, 387–429 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387

    Article  ADS  Google Scholar 

  2. B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Review on research of room temperature magnetic refrigeration. Int. J. Refrig. 26, 622–636 (2003). https://doi.org/10.1016/S0140-7007(03)00048-3

    Article  Google Scholar 

  3. T. Tang, K.M. Gu, Q.Q. Cao, D.H. Wang, S.Y. Zhang, Y.W. Du, Magnetocaloric properties of Ag-substituted perovskite-type manganites. J. Magn. Magn. Mater. 222, 110–114 (2000). https://doi.org/10.1016/S0304-8853(00)00544-8

    Article  ADS  Google Scholar 

  4. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04

    Article  ADS  Google Scholar 

  5. V.K. Pecharsky, K.A. Gschneidner Jr., Some common misconceptions concerning magnetic refrigerant materials. J. Appl. Phys. 90, 4614–4622 (2001). https://doi.org/10.1063/1.1405836

    Article  ADS  Google Scholar 

  6. V.K. Pecharsky, K.A. Gschneidner Jr., Y. Mudryk, D. Paudyal, Making the most of the magnetic and lattice entropy changes. J. Magn. Magn. Mater. 321, 3541–3547 (2009). https://doi.org/10.1016/j.jmmm.2008.03.013

    Article  ADS  Google Scholar 

  7. S.A. Ahmed, Structural and electrical properties in La1xLixMnO3. J. Magn. Magn. Mater. 340, 131–139 (2013). https://doi.org/10.1016/j.jmmm.2011.11.021

    Article  ADS  Google Scholar 

  8. F.Y. Shih, K.Z. Fung, Effect of Li addition on structural, electrical and electrochemical properties on lanthanum manganite. J. Alloys Compd. 391, 95–103 (2005). https://doi.org/10.1016/j.jallcom.2004.06.046

    Article  Google Scholar 

  9. S.L. Ye, W.H. Song, J.M. Dai, S.G. Wang, K.Y. Wang, C.L. Yuan, Y.P. Sun, Effect of Li substitution on the crystal structure and magnetoresistance of LaMnO3. J. Appl. Phys. 88, 5915–5919 (2000). https://doi.org/10.1063/1.1319971

    Article  ADS  Google Scholar 

  10. S. Roy, Y.Q. Guo, S. Venkatesh, N. Ali, Interplay of structure and transport properties of sodium-doped lanthanum manganite. J. Phys. Condens. Matter. 13, 9547 (2001). https://doi.org/10.1088/0953-8984/13/42/314

    Article  ADS  Google Scholar 

  11. S. Bhattacharya, R.K. Mukherjee, B.K. Chaudhuri, H.D. Yang, Effect of Li doping on the magnetotransport properties of La0.7Ca0.3−yLiyMnO3 system: decrease of metal–insulator transition temperature. Appl. Phys. Lett. 82, 4101 (2003). https://doi.org/10.1063/1.1580650

    Article  ADS  Google Scholar 

  12. S.K. Barik, C. Krishnamoorthi, R. Mahendiran, Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1−xFexO3 (0.05≤ x≤ 0.20). J. Magn. Magn. Mater. 323, 1015–1021 (2011). https://doi.org/10.1016/j.jmmm.2010.12.007

    Article  ADS  Google Scholar 

  13. L.K. Leung, A.H. Morrish, B.J. Evans, Magnetic properties of iron-doped manganites. Phys. Rev. B 13, 4069 (1976). https://doi.org/10.1103/PhysRevB.13.4069

    Article  ADS  Google Scholar 

  14. K.H. Ahn, X.W. Wu, K. Liu, C.L. Chien, Magnetic properties and colossal magnetoresistance of La(Ca)MnO3 materials doped with Fe. Phys. Rev. B 54, 15299 (1996). https://doi.org/10.1103/PhysRevB.54.15299

    Article  ADS  Google Scholar 

  15. S. Hcini, M. Boudard, S. Zemni, M. Oumezzine, Effect of Fe-doping on structural, magnetic and magnetocaloric properties of Nd0.67Ba0.33Mn1−xFexO3 manganites. Ceram. Int. 40, 16041–16050 (2014). https://doi.org/10.1016/j.ceramint.2014.07.140

    Article  Google Scholar 

  16. X.L. Wang, S.J. Kennedy, P. Gehringer, W. Lang, H.K. Liu, S.X. Dou, Colossal magnetoresistance in La1−xLixMnO3. J. Appl. Phys. 83, 7177 (1998). https://doi.org/10.1063/1.367793

    Article  ADS  Google Scholar 

  17. S. Ait Bouzid, A.C. Galca, M. Sajieddine, V. Kuncser, A.M. Rostas, N. Iacob, M. Enculescu, L. Amarande, I. Pasuk, A. Essoumhi, Magneto-functionalities of La1-xAxMnO3 (A= K; Ba) synthesized by flash combustion method. J. Alloys Compd. 839, 155546 (2020). https://doi.org/10.1016/j.jallcom.2020.155546

    Article  Google Scholar 

  18. K.V. Manukyan, A. Cross, S. Roslyakov, S. Rouvimov, A.S. Rogachev, E.E. Wolf, A.S. Mukasyan, Solution combustion synthesis of nano-crystalline metallic materials: mechanistic studies. J. Phys. Chem. C 117, 24417–24427 (2013). https://doi.org/10.1021/jp408260m

    Article  Google Scholar 

  19. E.A.C. Miranda, J.F.M. Carvajal, O.J.R. Baena, Effect of the fuels glycine, urea and citric acid on synthesis of the ceramic pigment ZnCr2O4 by solution combustion. Mater. Res. 18, 1038–1043 (2015). https://doi.org/10.1590/1516-1439.019915

    Article  Google Scholar 

  20. C.B. Larsen, S. Samothrakitis, A.D. Fortes, A.O. Ayaş, M. Akyol, A. Ekicibil, M. Laver, Basal plane ferromagnetism in the rhombohedral manganite La0.85Ag0.15MnO3+δ. J. Magn. Magn. Mater. 498, 166192 (2020). https://doi.org/10.1016/j.jmmm.2019.166192

    Article  Google Scholar 

  21. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  22. M. Gowrishankar, D. Babu, R.P. Saravanan, Room temperature multiferroism in La and Ti co-substituted BiFeO3 nanoparticles. Mater. Lett. 171, 34–37 (2016). https://doi.org/10.1016/j.matlet.2016.02.044

    Article  Google Scholar 

  23. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  ADS  Google Scholar 

  24. G. Shabbir, A.H. Qureshi, K. Saeed, Nano-crystalline LaFeO3 powders synthesized by the citrate-gel method. Mater. Lett. 60, 3706–3709 (2006). https://doi.org/10.1016/j.matlet.2006.03.093

    Article  Google Scholar 

  25. J.I. Langford, Some applications of pattern fitting to powder diffraction data. Prog. Cryst. Growth Charact. 14, 185 (1987). https://doi.org/10.1016/0146-3535(87)90018-9

    Article  Google Scholar 

  26. O. AitMellal, L. Oufni, M.Y. Messous, F. Neatu, M. Florea, S. Neatu, A.M. Rostas, M. Secu, Structural and optical investigations of Ce3+/Mn2+-doped LaPO4 phosphors. J. Electron. Mater. 50, 2137–2147 (2021). https://doi.org/10.1007/s11664-020-08678-7

    Article  ADS  Google Scholar 

  27. A.M. Ahmed, G. Papavassiliou, H.F. Mohamed, E.M.M. Ibrahim, Structural, magnetic and electronic properties on the Li-doped manganites. J. Magn. Magn. Mater. 392, 27–41 (2015). https://doi.org/10.1016/j.jmmm.2015.05.004

    Article  ADS  Google Scholar 

  28. S. Jin, S. Zhang, H. Li, K. Chu, X. Yu, X. Guan, X. Pu, X. Liu, A-site Na-doping to enhance room-temperature TCR of La1-xNaxMnO3 polycrystalline ceramics. Mater. Today Commun. 28, 102496 (2021). https://doi.org/10.1016/j.mtcomm.2021.102496

    Article  Google Scholar 

  29. Y.S. Chou, J.W. Stevenson, T.R. Armstrong, L.R. Pederson, Mechanical properties of La1-xSrxCo0.2Fe0.8O3 mixed-conducting perovskites made by the combustion synthesis technique. J. Am. Ceram. Soc. 83, 1457–1464 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01410.x

    Article  Google Scholar 

  30. Y.C. Liou, Y.R. Chen, Synthesis and microstructure of (LaSr)MnO3 and (LaSr)FeO3 ceramics by a reaction-sintering process. Ceram. Int. 34, 273–278 (2008). https://doi.org/10.1016/j.ceramint.2006.09.015

    Article  Google Scholar 

  31. H. Li, K. Chu, X. Pu, X. Yu, X. Guan, S. Jin, X. Liu, Optimization of room-temperature TCR of polycrystalline La0.9-xSrxK0.1MnO3 ceramics by Sr adjustment. Ceram. Int. 47, 94–101 (2021). https://doi.org/10.1016/j.ceramint.2020.08.111

    Article  Google Scholar 

  32. K.L. Yanapu, S.S. Samatham, D. Kumar, V. Ganesan, P.V. Reddy, Effect of bismuth doping on the physical properties of La–Li–Mn–O manganite. Appl. Phys. A 122, 199 (2016). https://doi.org/10.1007/s00339-016-9731-5

    Article  ADS  Google Scholar 

  33. K. De, R. Ray, R.N. Panda, S. Giri, H. Nakamura, T. Kohara, The effect of Fe substitution on magnetic and transport properties of LaMnO3. J. Magn. Magn. Mater. 288, 339–346 (2005). https://doi.org/10.1016/j.jmmm.2004.09.118

    Article  ADS  Google Scholar 

  34. S. Ait Bouzid, M. Sajieddine, O. Mounkachi, M. Mansori, A. Essoumhi, Influence of iron substitution on the ferromagnetic ordering and magnetic entropy variation in La1-xNaxMn1-yFeyO3 (x= 0.1, 0.2 and y= 0, 0.1). J. Magn. Magn. Mater. 537, 168194 (2021). https://doi.org/10.1016/j.jmmm.2021.168194

    Article  Google Scholar 

  35. A. Ammar, S. Zouari, A. Cheikh-Rouhou, Fe doping effects on the structural and magnetic properties in Pr0.5Sr0.5Mn1−xFexO3 with 0≤ x≤ 0.3. Phys. Status Solidi C 1, 1645–1648 (2004). https://doi.org/10.1002/pssc.200304441

    Article  ADS  Google Scholar 

  36. A.S. Wills, N.P. Raju, J.E. Greedan, Low-temperature structure and magnetic properties of the spinel LiMn2O4: a frustrated antiferromagnet and cathode material. Chem. Mater. 11, 1510–1518 (1999). https://doi.org/10.1021/cm981041

    Article  Google Scholar 

  37. R. M’nassri, Magnetocaloric effect and its implementation in critical behaviour study of La0.67Ca0.33Mn0.9Fe0.1O3. Bull. Mater. Sci. 39, 551–557 (2016). https://doi.org/10.1007/s12034-016-1153-7

    Article  Google Scholar 

  38. L. Li, K. Nishimura, W.D. Hutchison, K. Mori, Large magnetocaloric effect in La2/3Ca1/3Mn1−xSixO3 (x= 0.05–0.20) manganites. J. Phys. D: Appl. Phys. 41, 175002 (2008). https://doi.org/10.1088/0022-3727/41/17/175002

    Article  ADS  Google Scholar 

  39. T.L. Phan, P.Q. Thanh, P.D.H. Yen, P. Zhang, T.D. Thanh, S.C. Yu, Ferromagnetic short-range order and magnetocaloric effect in Fe-doped LaMnO3. Solid State Commun. 167, 49–53 (2013). https://doi.org/10.1016/j.ssc.2013.06.009

    Article  ADS  Google Scholar 

  40. J. Yang, W.H. Song, Y.Q. Ma, R.L. Zhang, B.C. Zhao, Z.G. Sheng, G.H. Zheng, J.M. Dai, Y.P. Sun, Structural, magnetic, and transport properties of the Cu-doped manganite La0.85Te0.15Mn1−xCuxO3 (0 ≤x≤ 0.20). Phys. Rev. B 70, 092504 (2004). https://doi.org/10.1103/PhysRevB.70.092504

    Article  ADS  Google Scholar 

  41. L. Li, K. Nishimura, M. Fujii, K. Mori, Effect of Mn-site Si substitution on magnetic, transport properties and colossal magnetoresistance in La2/3Ca1/3Mn1−xSixO3 (x= 0.05–0.25) system. Solid State Commun. 144, 10–14 (2007). https://doi.org/10.1016/j.ssc.2007.07.033

    Article  ADS  Google Scholar 

  42. M.S. Anwar, F. Ahmed, B.H. Koo, Structural distortion effect on the magnetization and magnetocaloric effect in Pr modified La0.65Sr0.35MnO3 manganite. J. Alloys Compd. 617, 893–898 (2014). https://doi.org/10.1016/j.jallcom.2014.08.105

    Article  Google Scholar 

  43. A. Guedri, S. Mnefgui, S. Hcini, E.K. Hlil, A. Dhahri, B-site substitution impact on structural and magnetocaloric behavior of La0.55Pr0.1Sr0.35Mn1-xTixO3 manganites. J. Solid State Chem. 297, 122046 (2021). https://doi.org/10.1016/j.jssc.2021.122046

    Article  Google Scholar 

  44. S. Hcini, F. Hcini, M.L. Bouazizi, S. Zemni, Correlation between magnetic and electrical properties of La0.7Ba0.15Ag0.15MnO3 manganite prepared by sol gel method. Appl. Phys. A 126, 498 (2020). https://doi.org/10.1007/s00339-020-03694-0

    Article  ADS  Google Scholar 

  45. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  ADS  Google Scholar 

  46. R. M’nassri, M.M. Nofal, P. de Rango, N. Chniba-Boudjada, Magnetic entropy table-like shape and enhancement of refrigerant capacity in La1.4Ca1.6Mn2O7–La1.3Eu0.1Ca1.6Mn2O7 composite. RSC Adv. 9, 14916–14927 (2019). https://doi.org/10.1039/C9RA00984A

    Article  ADS  Google Scholar 

  47. A.H. El-Sayed, M.A. Hamad, Magnetocaloric effect in La1−xLixMnO3. J. Supercond. Nov. Magn. 31, 4167–4171 (2018). https://doi.org/10.1007/s10948-018-4699-3

    Article  Google Scholar 

  48. X. Bohigas, J. Tejada, E. Del Barco, X.X. Zhang, M. Sales, Tunable magnetocaloric effect in ceramic pe rovskites. Appl. Phys. Lett. 73, 390–392 (1998). https://doi.org/10.1063/1.121844

    Article  ADS  Google Scholar 

  49. Z.M. Wang, G. Ni, Q.Y. Xu, H. Sang, Y.W. Du, Magnetic entropy change in perovskite manganites La0.65Nd0.05Ca0.3Mn0.9B0.1O3 (B= Mn, Cr, Fe). J. Magn. Magn. Mater. 234, 371–374 (2001). https://doi.org/10.1016/S0304-8853(01)00424-3

    Article  ADS  Google Scholar 

  50. Z. Liu, W.G. Lin, K.W. Zhou, J.L. Yan, Effect of Cu doping on the structural, magnetic and magnetocaloric properties of La0.7Sr0.25Na0.05Mn1−xCuxO3 manganites. Ceram. Int. 44, 2797–2802 (2018). https://doi.org/10.1016/j.ceramint.2017.11.021

    Article  Google Scholar 

  51. A.E. Elyacoubi, R. Masrour, A. Jabar, Magnetocaloric effect and magnetic properties in SmFe1-xMnxO3 perovskite: monte carlo simulations. Solid State Commun. 271, 39–43 (2018). https://doi.org/10.1016/j.ssc.2017.12.015

    Article  ADS  Google Scholar 

  52. Z. Wang, Q. Xu, H. Zhang, Magnetocaloric effect at room temperature in manganese perovskite La0.65Nd0.05Pb0.3MnO3 with double resistivity peaks. J. Magn. Magn. Mater. 323, 3229–3233 (2011). https://doi.org/10.1016/j.jmmm.2011.07.013

    Article  ADS  Google Scholar 

  53. M.C. Silva-Santana, P. Barrozo, E.J.R. Plaza, L. de los Santos Valladares, N.O. Moreno, Magnetocaloric and magnetic properties of SmFe0.5Mn0.5O3 complex perovskite. J. Magn. Magn. Mater. 401, 612–617 (2016). https://doi.org/10.1016/j.jmmm.2015.10.076

    Article  ADS  Google Scholar 

  54. K. Laajimi, M. Khlifi, E.K. Hlil, M.H. Gazzah, J. Dhahri, Enhancement of magnetocaloric effect by Nickel substitution in La0.67Ca0.33Mn0.98Ni0.02O3 manganite oxide. J. Magn. Magn. Mater. 491, 165625 (2019). https://doi.org/10.1016/j.jmmm.2019.165625

    Article  Google Scholar 

  55. M. Baazaoui, M. Boudard, S. Zemni, Magnetocaloric properties in Ln0.67Ba0.33Mn1−xFexO3 (Ln= La or Pr) manganites. Mater. Lett. 65, 2093–2095 (2011). https://doi.org/10.1016/j.matlet.2011.04.051

    Article  Google Scholar 

  56. Y. Sun, W. Tong, Y. Zhang, Large magnetic entropy change above 300 K in La0.67Sr0.33Mn0.9Cr0.1O3. J. Magn. Magn. Mater. 232, 205–208 (2001). https://doi.org/10.1016/S0304-8853(01)00263-3

    Article  ADS  Google Scholar 

  57. M.R. Laouyenne, M. Baazaoui, K. Farah, E.K. Hlil, M. Oumezzine, A large magnetocaloric effect of La0.8Na0.2Mn0.97Bi0.03O3 manganite synthesized by pechini Sol-Gel method and compared to the sample synthesized by solid-state route. J. Magn. Magn. Mater. 474, 393–399 (2019). https://doi.org/10.1016/j.jmmm.2018.11.070

    Article  ADS  Google Scholar 

  58. S.E. Kossi, S. Ghodhbane, S. Mnefgui, J. Dhahri, E.K. Hlil, The impact of disorder on magnetocaloric properties in Ti-doped manganites of La0.7Sr0.25Na0.05Mn (1–x) TixO3 (0≤ x≤ 0.2). J. Magn. Magn. Mater. 395, 134–142 (2015). https://doi.org/10.1016/j.jmmm.2015.07.050

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Moroccan National Center for Scientific and Technical Research in the framework of excellence scholarship number 17USMS2018.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sara Ait Bouzid or Abdellatif Essoumhi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Bouzid, S., Sajieddine, M., Hlil, E.K. et al. Structural, magnetic transition and magnetocolaric properties of La1−xLixMn1−yFeyO3 (x = 0.1, 0.2 and y = 0, 0.1) manganites. Appl. Phys. A 128, 121 (2022). https://doi.org/10.1007/s00339-021-05254-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05254-6

Keywords

Navigation