Skip to main content
Log in

Magnetocaloric effect and its implementation in critical behaviour study of La0.67Ca0.33Mn0.9Fe0.1O3

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The magnetocaloric effect (MCE) and the field dependence of the magnetic entropy changes in the perovskite-type La0.67Ca0.33Mn0.9Fe0.1O3 were studied using the phenomenological model. The model parameters were determined from the magnetization data adjustment and used to give better fits to magnetic transition and to calculate the magnetocaloric properties. The entropy curves have been observed to behave a symmetrical broadning of ΔS M peak with the increase in magnetic field. The values of maximum magnetic entropy change, full-width at half-maximum, relative cooling power (RCP) and the refrigerant capacity (RC), at several magnetic field variations, were calculated. The maximum magnetic entropy change of 1.17 J kg−1 K−1 was obtained for 3 T. The theoretical calculations were compared with the available experimental data. The results were found to be in good accordance. The critical exponents associated with ferromagnetic transition have been determined from the MCE methods. By using the field dependence of ΔS maxa (μ 0 H)n and the RCP ≈ v (μ 0 H)w, the critical behaviour of La0.67Ca0.33Mn0.9Fe0.1O3 was investigated. From the analysis of the relationship between the local exponent n and w, other exponents β, γ and δ were calculated. Our results indicated that the ferromagnetic coupling in the La0.67Ca0.33Mn0.9Fe0.1O3 can be well described by the 3D Heisenberg model. This reflects an existence of ferromagnetic short-range order in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Tishin A M and Spichkin Y I 2003 The Magnetocaloric Effect and Its Applications (Bristol: Institute of Physics Publishing)

  2. Pecharsky V K and Gschneidner K A Jr 1997, Phys. Rev. Lett. 78 4494

    Article  Google Scholar 

  3. Pecharsky V K and Gschneidner K A Jr 2001, Adv. Mater. 13 683

    Article  Google Scholar 

  4. M’nassri R and Cheikhrouhou A 2014 J. Supercond. Nov. Magn. 27 1059

    Article  Google Scholar 

  5. Mbarek H, M’nasri R, Cheikhrouhou-Koubaa W and Cheikhrouhou A 2014 Status Solidi A 211 975

    Article  Google Scholar 

  6. Fähler S, Rössler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Müller S, Quandt E and Albe K 2012 Adv. Eng. Mater. 14 10

    Article  Google Scholar 

  7. De Oliveira N A and Von Ranke P J 2010 Phys. Rep. 489 89

    Article  Google Scholar 

  8. Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325

    Article  Google Scholar 

  9. M’nassri R, Chniba Boudjada N and Cheikhrouhou A 2015 J. Alloys Compd. 626 20

    Article  Google Scholar 

  10. M’nassri R, Cheikhrouhou-Koubaa W, Chniba-Boudjada N and Cheikhrouhou A 2013 J. Appl. Phys. 113 073905

  11. Choura Maatar S, M’nassri R, Cheikhrouhou Koubaa W, Koubaa M and Cheikhrouhou A 2015 J. Solid State Chem. 225 83

    Article  Google Scholar 

  12. M’nassri R, Chniba Boudjada N and Cheikhrouhou A 2015 J. Alloys Compd. 640 183

    Article  Google Scholar 

  13. M’nassri R and Cheikhrouhou A 2014 J. Supercond. Nov. Magn. 27 421

    Article  Google Scholar 

  14. Akther Hossain A K M, Cohen L F, Kodenkandeth T, Mac Manus-Driscoll J and Mc Nalford N 1999 J. Magn. Magn. Mater. 195 31

    Article  Google Scholar 

  15. Selmi A, Bettaibi A, Rahmouni H, M’nassri R, Chniba Boudjada N, Chiekhrouhou A and Khirouni K 2015 J. Ceram. Int. 41 11221

    Article  Google Scholar 

  16. M’nassri R and Cheikhrouhou A 2014 J. Supercond. Nov. Magn. 27 1463

    Article  Google Scholar 

  17. Zener C 1951 Phys. Rev. 82 403

    Article  Google Scholar 

  18. Millis A J, Littlewood P B and Shraiman B I 1995 Phys. Rev. Lett. 74 5144

    Article  Google Scholar 

  19. Goodenough J B, Wold A, Arnott R J and Menyuk N 1961 Phys. Rev. 124 373

    Article  Google Scholar 

  20. M’nassri R, Cheikhrouhou-Koubaa W, Boudjada N and Cheikhrouhou A 2013 J. Supercond. Nov. Magn. 26 1429

    Article  Google Scholar 

  21. M’nassri R, Cheikhrouhou-Koubaa W, Koubaa M, Boudjada N and Cheikhrouhou A 2011 Solid State Comm. 151 1579

    Article  Google Scholar 

  22. M’nassri R, Cheikhrouhou-Koubaa W, Kouba M and Cheikhrouhou A 2012 IOP Conf. Ser: Mater. Sci. Eng. 28 012050

  23. Klein J, Höfener C, Uhlenbruck S, Alff L, Büchner B and Gross R 1999 Europhys. Lett. 47 371

    Article  Google Scholar 

  24. M’nassri R, Chniba Boudjada N and Cheikhrouhou A 2015 J. Alloys Compd. 626 20

    Article  Google Scholar 

  25. Lampen P, Puri A, Phan M -H and Srikanth H 2012 J. Alloys Compd. 512 94

    Article  Google Scholar 

  26. M’nassri R and Cheikhrouhou A 2014 J. Supercond. Nov. Magn. 27 1463

    Article  Google Scholar 

  27. Phan M H and Yu S C 2007 J. Magn. Magn. Mater. 308 325

  28. Osthöver C, Grünberg P and Arons R R 1998 J. Magn. Magn. Mater. 854 177

    Google Scholar 

  29. Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Chniba Boudjada N and Cheikhrouhou A 2015 J. Alloys Compd. 619 627

    Article  Google Scholar 

  30. Barahona P, Pena O, Antunes A B, Campos C, Pecchi G, Moreno Y, Moure C and Gil V 2008 J. Magn. Magn. Mater. 320 e61

    Article  Google Scholar 

  31. Selmi A, M’nassri R, Cheikhrouhou-Koubaa W, Chniba Boudjada N and Cheikhrouhou A 2015 J. Ceram. Int. 41 7723

    Article  Google Scholar 

  32. Mahjoub S, Baazaoui M, M’nassri R, Rahmouni H, Chniba Boudjada N and Oumezzine M 2014 J. Alloys Compd. 608 191

    Article  Google Scholar 

  33. Chang Y L, Huang Q and Ong C K 2002 J. Appl. Phys. 91 789

    Article  Google Scholar 

  34. Mukadam M D and Yusuf S M 2009 J. Appl. Phys. 105 063910

  35. Oumezzine M, Pea O, Kallel S and Oumezzine M 2012 J. Alloys Compd. 539 116

    Article  Google Scholar 

  36. M’nassri R 2014 J. Supercond. Nov. Magn. 27 1787

    Article  Google Scholar 

  37. Halder M, Yusuf S M, Mukadam M D and Shashikala K 2010 Phys. Rev. B 81 174402

  38. Hamad M A 2012 Phase Transitions 85 106

    Article  Google Scholar 

  39. Gschneidner K A and Pecharsky V K Jr 2000, Annu. Rev. Mater. Sci. 30 387

    Article  Google Scholar 

  40. Gschneidner K A, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum 315 69

    Article  Google Scholar 

  41. El-Hagary M 2010 J. Alloys Compd. 502 376

    Article  Google Scholar 

  42. Wang A, Liu Y, Zhang Z, Long Y and Cao G 2004 Solid State Commun. 130 293

    Article  Google Scholar 

  43. Foldeaki M, Chahine R and Bose T K 1995 J. Appl. Phys. 77 3528

    Article  Google Scholar 

  44. Yang H, Zhu Y H, Xian T and Jiang J L 2013 J. Alloys Compd. 555 150

    Article  Google Scholar 

  45. Zhang X X, Wen G H, Wang F W, Wang W H, Yu C H et al 2000, Appl. Phys. Lett. 77 3072

    Article  Google Scholar 

  46. Su Y, Sui Y, Cheng J-G, Zhou J-S, Wang X, Wang Y and Goodenough J B 2013 Phys. Rev. B 87 195102

  47. Franco V and Conde A 2010 Int. J. Refrig. 33 465

    Article  Google Scholar 

  48. Stanley H E 1971 Introduction to Phase Transitions and Critical Phenomena (London: Oxford University Press)

    Google Scholar 

  49. Franco V, Blazquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512

    Article  Google Scholar 

  50. Franco V, Conde A, Romero-Enrique J M and Blazquez J S 2008 J. Phys. Condens. Matter 20 285207

    Article  Google Scholar 

  51. Zhang X X, Tejada J, Xin Y, Sun G F, Wong K W and Bohigas X 1996 Appl. Phys. Lett. 69 3596

    Article  Google Scholar 

  52. Phan T -L, Thanh P Q, Yen P D H, Zhang P, Thanh T D and Yu S C 2013 Solid State Commun. 167 49

    Article  Google Scholar 

  53. M’nassri R and Cheikhrouhou A 2014 J. Korean Phys. Soc. 64 879

    Article  Google Scholar 

  54. Franco V, Conde A, Pecharsky V K and Gschneidner K A . 2007, Europhys. Lett. 79 47009

    Article  Google Scholar 

  55. Franco V, Conde A, Sidhaye D, Prasad B L V, Poddar P, Srinath S, Phan M H and Srikanth H 2010 J. Appl. Phys. 107 09A902

    Google Scholar 

  56. Franco V, Blazquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512

    Article  Google Scholar 

  57. Caballero-Flores R, Franco V, Conde A and Kiss L F 2009 J. Appl. Phys. 105 07A919

    Article  Google Scholar 

  58. Franco V, Conde A, Provenzano V and Shull R D 2010 J. Magn. Magn. Mater. 322 218

    Article  Google Scholar 

  59. Franco V, Caballero-Flores R, Conde A, Dong Q Y and Zhang H W 2009 J. Magn. Magn. Mater. 321 1115

    Article  Google Scholar 

  60. Zhang L, Fan J, Tong W, Ling L, Pi L and Zhang Y 2012 Physica B 407 3543

    Article  Google Scholar 

  61. Stanley H E 1999 Rev. Mod. Phys. 71 S358

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M’NASSRI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M’NASSRI, R. Magnetocaloric effect and its implementation in critical behaviour study of La0.67Ca0.33Mn0.9Fe0.1O3 . Bull Mater Sci 39, 551–557 (2016). https://doi.org/10.1007/s12034-016-1153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1153-7

Keywords

Navigation