Skip to main content
Log in

The effect of CoFe2O4, CuFe2O4 and Cu/CoFe2O4 nanoparticles on the optical properties and piezoelectric response of the PVDF polymer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cobalt ferrite, Copper ferrite and cobalt doped copper ferrite nanoparticles have been synthesized and characterized using different characterization methods (XRD, FTIR and FESEM). The prepared nanoparticles have been used as promising fillers of the polyvinylidene fluoride (PVDF) polymer. The PVDF/(Cu–CoFe2O4, CoFe2O4, and CuFe2O4) nanocomposites films have been prepared via a simple solution casting technique. The optical properties and the piezoelectric response of the prepared nanocomposite films have been studied. This study showed that Cu–CoFe2O4 and CoFe2O4, have enhanced the interfacial polarization density and dielectric constant. The prepared nanofillers reduced the PVDF band gap energy value. The optical conductivity value of PVDF/(Cu–CoFe2O4 and CoFe2O4) increased five times compared with the pure PVDF. Also, an increase in the piezoelectric response has been recorded by adding the nano-fillers to the pure PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Zafar, M. Gadalla, Energy harvesting using small renewable energy sources: UAV application. Energy (2015). https://doi.org/10.1115/imece2015-51650

    Article  Google Scholar 

  2. H. Liu, J. Zhong, C. Lee, S.-W. Lee, L. Lin, A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl. Phys. Rev. 5(4), 041306 (2018). https://doi.org/10.1063/1.5074184

    Article  ADS  Google Scholar 

  3. R.I. Haque, R. Vié, M. Germainy, L. Valbin, P. Benaben, X. Boddaert, Inkjet printing of high molecular weight PVDF-TrFE for flexible electronics. Flex. Print. Electron. (2015). https://doi.org/10.1088/2058-8585/1/1/015001

    Article  Google Scholar 

  4. S.K. Mahadeva, J. Berring, K. Walus, B. Stoeber, Effect of poling time and grid voltage on phase transition and piezoelectricity of Poly(vinylidene Fluoride) thin films using corona poling. J. Phys. D Appl. Phys. 46(28), 285305 (2013). https://doi.org/10.1088/0022-3727/46/28/285305

    Article  Google Scholar 

  5. D.A. Porter, T.V.T. Hoang, T.A. Berfield, Effects of in-situ poling and process parameters on fused filament fabrication printed PVDF sheet mechanical and electrical properties. Addit. Manuf. 13, 81–92 (2017). https://doi.org/10.1016/j.addma.2016.11.005

    Article  Google Scholar 

  6. W. Zhou, Q. Chen, X. Sui, L. Dong, Z. Wang, Enhanced thermal conductivity and dielectric properties of Al/β-SiCw/PVDF composites. Compos. A Appl. Sci. Manuf. 71, 184–191 (2015). https://doi.org/10.1016/j.compositesa.2015.01.024

    Article  Google Scholar 

  7. Lu. Yang, J. Qiu, H. Ji, K. Zhu, J. Wang, Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible Poly(vinylidene Fluoride) composites. Compos. A Appl. Sci. Manuf. 65, 125–134 (2014). https://doi.org/10.1016/j.compositesa.2014.06.006

    Article  Google Scholar 

  8. D. Damjanovic, Hysteresis in piezoelectric and ferroelectric materials. The Sci. Hysteresis (2006). https://doi.org/10.1016/b978-012480874-4/50022-1

    Article  MATH  Google Scholar 

  9. M. Haponska, A. Trojanowska, A. Nogalska, R. Jastrzab, T. Gumi, B. Tylkowski, PVDF membrane morphology—influence of polymer molecular weight and preparation temperature. Polymers 9(12), 718 (2017). https://doi.org/10.3390/polym9120718

    Article  Google Scholar 

  10. M.A.R. Miranda, J.M. Sasaki, The limit of application of the Scherrer equation. Acta Crystallographica Sect. A Found. Adv. 74(1), 54–65 (2018). https://doi.org/10.1107/s2053273317014929

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Ramadan, Physical study of cobalt ferrite and its application in purification of water. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-3121-8

    Article  Google Scholar 

  12. N.B. Singh, Km. Rachna, Copper Ferrite-polyaniline nanocomposite and its application for Cr (VI) ion removal from aqueous solution. Environ. Nanotechnology, Monit. Manag. 14, 100301 (2020). https://doi.org/10.1016/j.enmm.2020.100301

    Article  Google Scholar 

  13. K. Tedjieukeng, H. Mathias, P.K. Tsobnang, R.L. Fomekong, E.P. Etape, P.A. Joy, A. Delcorte, J.N. Lambi, Structural characterization and magnetic properties of undoped and copper-doped cobalt ferrite nanoparticles prepared by the octanoate coprecipitation route at very low dopant concentrations. RSC Adv. 8(67), 38621–38630 (2018). https://doi.org/10.1039/c8ra08532c

    Article  ADS  Google Scholar 

  14. V.S. Kirankumar, S. Sumathi, Photocatalytic and antibacterial activity of bismuth and copper co-doped cobalt ferrite nanoparticles. J. Mater. Sci. Mater. Electron. 29(10), 8738–8746 (2018). https://doi.org/10.1007/s10854-018-8890-x

    Article  Google Scholar 

  15. E.H. Abdelhamid, O.D. Jayakumar, V. Kotari, B.P. Mandal, R. Rao, V.M. Naik, R. Naik, A.K. Tyagi, Multiferroic PVDF–Fe3O4 hybrid films with reduced graphene oxide and ZnO nanofillers. RSC Adv. 6(24), 20089–20094 (2016). https://doi.org/10.1039/c5ra26983k

    Article  ADS  Google Scholar 

  16. A. Vasudeo Rane, S. Thomas, and N. Kalarikkal, eds. Microscopy applied to materials sciences and life sciences (2018). https://doi.org/10.1201/9781351251587

  17. F.A. Al-Dhabaan, M. Mostafa, H. Almoammar, K.A. Abd-Elsalam, Chitosan-based nanostructures in plant protection applications. Nanobiotechnol. Appl. Plant Protect. (2018). https://doi.org/10.1007/978-3-319-91161-8_13

    Article  Google Scholar 

  18. D.J. Bhagat, G.R. Dhokane, UV–VIS spectroscopic studies of one pot chemically synthesized polyindole/poly(vinyl Acetate) composite films. Mater. Lett. 136, 251–253 (2014). https://doi.org/10.1016/j.matlet.2014.08.003

    Article  Google Scholar 

  19. A.M. Ismail, M.I. Mohammed, S.S. Fouad, Optical and structural properties of polyvinylidene fluoride (PVDF) / reduced graphene oxide (RGO) nanocomposites. J. Mol. Struct. 1170, 51–59 (2018). https://doi.org/10.1016/j.molstruc.2018.05.083

    Article  ADS  Google Scholar 

  20. M.D. Aggarwal, W.S. Wang, K. Bhat, Benjamin G. Penn, and Donald O. Frazier. Photonic crystals. handbook of advanced electronic and photonic materials and devices (2001): 193–228. doi:https://doi.org/10.1016/b978-012513745-4/50075-5

  21. A.A. Kokhanovsky, ed. Light Scattering Reviews 9 (2015). https://doi.org/10.1007/978-3-642-37985-7

  22. P. Stoller, V. Jacobsen, V. Sandoghdar, Measurement of the complex dielectric constant of a single gold nanoparticle. Opt. Lett. 31(16), 2474 (2006). https://doi.org/10.1364/ol.31.002474

    Article  ADS  Google Scholar 

  23. J.-Y. Kim, T.Y. Kim, J.W. Suk, H. Chou, J.-H. Jang, J.H. Lee, I.N. Kholmanov, D. Akinwande, R.S. Ruoff, Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler. Small 10(16), 3405–3411 (2014). https://doi.org/10.1002/smll.201400363

    Article  Google Scholar 

  24. K. Klyukin, V. Alexandrov, Effect of intrinsic point defects on ferroelectric polarization behavior of SrTiO3. Phys. Rev. B (2017). https://doi.org/10.1103/physrevb.95.035301

    Article  Google Scholar 

  25. J. Singh, Optical properties of condensed matter and applications (Wiley, Chichester, 2007)

    Google Scholar 

  26. M.A. Morales, I. Fernández-Cervantes, R. Agustín-Serrano, S. Ruíz-Salgado, M.P. Sampedro, J.L. Varela-Caselis, R. Portillo, E. Rubio, Ag3PO4 microcrystals with complex polyhedral morphologies diversity obtained by microwave-hydrothermal synthesis for mb degradation under sunlight. Res. Phys. 12, 1344–1356 (2019). https://doi.org/10.1016/j.rinp.2018.12.082

    Article  Google Scholar 

  27. S. Jana, S. Garain, S. Sen, D. Mandal, The influence of hydrogen bonding on the dielectric constant and the piezoelectric energy harvesting performance of hydrated metal salt mediated PVDF Films. Phys. Chem. Chem. Phys. 17(26), 17429–17436 (2015). https://doi.org/10.1039/c5cp01820j

    Article  Google Scholar 

  28. A. Salimi, A.A. Yousefi, Conformational changes and phase transformation mechanisms in PVDF solution-cast films. J. Polym. Sci., Part B Polym. Phys. 42(18), 3487–3495 (2004). https://doi.org/10.1002/polb.20223

    Article  ADS  Google Scholar 

  29. S.M. Nakhmanson, M. Buongiorno Nardelli, J. Bernholc, Ab initiostudies of polarization and piezoelectricity in vinylidene fluoride and bn-based polymers. Phys. Rev. Lett. (2004). https://doi.org/10.1103/physrevlett.92.115504

    Article  Google Scholar 

  30. M. Behzad, A.A. Yousefi, S.M. Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym. Test. 26(1), 42–50 (2007). https://doi.org/10.1016/j.polymertesting.2006.08.003

    Article  Google Scholar 

  31. Fu. Jing, Y. Hou, M. Zheng, Q. Wei, M. Zhu, H. Yan, Improving dielectric properties of PVDF composites by employing surface modified strong polarized BaTiO3 particles derived by molten salt method. ACS Appl. Mater. Interfaces. 7(44), 24480–24491 (2015). https://doi.org/10.1021/acsami.5b05344

    Article  Google Scholar 

  32. D. Vasileva, S. Vasilev, A.L. Kholkin, V.Y. Shur, Domain diversity and polarization switching in amino acid β-glycine. Materials 12(8), 1223 (2019). https://doi.org/10.3390/ma12081223

    Article  ADS  Google Scholar 

  33. X. Liu, Xu. Sixing, X. Kuang, D. Tan, X. Wang, Nanoscale investigations on β-phase orientation, piezoelectric response, and polarization direction of electrospun PVDF nanofibers. RSC Adv. 6(110), 109061–109066 (2016). https://doi.org/10.1039/c6ra24473d

    Article  ADS  Google Scholar 

  34. D. Chen, Z. Chen, Q. He, J.D. Clarkson, C.R. Serrao, A.K. Yadav, M.E. Nowakowski et al., Interface engineering of domain structures in BiFeO3 thin films. Nano Lett. 17(1), 486–493 (2016). https://doi.org/10.1021/acs.nanolett.6b04512

    Article  ADS  Google Scholar 

  35. D. Cavallini, M. Fortunato, G. De Bellis, and M. S. Sarto, PFM Characterization of Piezoelectric PVDF/ZnO Nanorod Thin Films. In 2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO) (2018). doi:https://doi.org/10.1109/nano.2018.8626362

  36. M. Alexe, D. Hesse, Tip-enhanced photovoltaic effects in bismuth ferrite. Nat. Commun. (2011). https://doi.org/10.1038/ncomms1261

    Article  Google Scholar 

  37. D.A. Bonnell, S.V. Kalinin, A.L. Kholkin, A. Gruverman, Piezoresponse force microscopy: a window into electromechanical behavior at the nanoscale. MRS Bull. 34(9), 648–657 (2009). https://doi.org/10.1557/mrs2009.176

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mai M. El-Masry or Rania Ramadan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Masry, M.M., Ramadan, R. The effect of CoFe2O4, CuFe2O4 and Cu/CoFe2O4 nanoparticles on the optical properties and piezoelectric response of the PVDF polymer. Appl. Phys. A 128, 110 (2022). https://doi.org/10.1007/s00339-021-05238-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05238-6

Keywords

Navigation