Skip to main content
Log in

Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly sensitive detection of urea is important and necessary in a wide variety of areas such as clinical diagnostics, environmental monitoring, and food safety applications. Herein, we demonstrated the fabrication of the sonochemical synthesized copper phthalocyanine (CuPc)-borophene nanocomposites-based non-enzymatic electrochemical biosensor for the urea detection at room temperature. The prepared CuPc, borophene, and CuPc-borophene nanocomposite were characterized using different techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy. With the surface and chemical advantages of CuPc-borophene nanocomposite, urea detection performances of the CuPc-borophene nanocomposite-based biosensors exhibited a high selectivity in many matrices such as glucose, fructose, lactose, and maltose, even in highly complex isotonic solutions containing competitive ions at room temperature. CuPc-borophene nanocomposite-based sensor exhibited higher sensitivity of 10.43 μA/mMcm2 against (250–1000) µM with a detection limit of 0.05 μM in voltammetric cycle of 60 s due to high charge transport advantages of borophene additive. Experimental results revealed that the CuPc-borophene nanocomposite-based non-enzymatic electrochemical biosensor was a sensitive, stable, rapid, portable, and low-cost. Furthermore, the biosensor is a promising candidate for urea electrochemical analysis in a complex aqueous medium for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Dutta, S. Chandra, A.K. Swain, D. Bahadur, Anal. Chem. 86, 5914 (2014)

    Google Scholar 

  2. A. Sharma, K. Rawat, H.B. Bohidar, P.R. Solanki, Appl. Clay Sci. 146, 297 (2017)

    Google Scholar 

  3. A. Kaushik, P.R. Solanki, A.A. Ansari, G. Sumana, S. Ahmad, B.D. Malhotra, Sens. Actuators, B Chem. 138, 572 (2009)

    Google Scholar 

  4. T.Q.N. Tran, S.W. Yoon, B.J. Park, H.H. Yoon, J. Electroanal. Chem. 818, 76 (2018)

    Google Scholar 

  5. C.C. Buron, M. Quinart, T. Vrlinic, S. Yunus, K. Glinel, A.M. Jonas, B. Lakard, Electrochim. Acta 148, 53 (2014)

    Google Scholar 

  6. K.M. Khan, H. Krishna, S.K. Majumder, P.K. Gupta, Food Anal. Methods 8, 93 (2014)

    Google Scholar 

  7. Z.P. Yang, X. Liu, C.J. Zhang, B.Z. Liu, Biosens. Bioelectron. 74, 85 (2015)

    Google Scholar 

  8. M. Manjula, B. Karthikeyan, D. Sastikumar, Appl. Phys. A 126, 1 (2020)

    Google Scholar 

  9. S. Asgari, N. Granpayeh, T. Fabritius, Opt. Commun. 474, 126080 (2020)

    Google Scholar 

  10. S. Hu, R. Tian, Y. Dong, J. Yang, J. Liu, S. Cao, RSC Adv. 3, 21447 (2013)

    ADS  Google Scholar 

  11. M. Shi, Y. Zhao, H. Xu, J. Mack, L. Yin, X. Wang, Z. Shen, RSC Adv. 6, 71199 (2016)

    ADS  Google Scholar 

  12. A.M. Master, M. Livingston, N.L. Oleinick, A. Sen Gupta, Mol. Pharm. 9, 2331 (2012)

    Google Scholar 

  13. H. Hayashi, W. Nihashi, T. Umeyama, Y. Matano, S. Seki, Y. Shimizu, H. Imahori, J. Am. Chem. Soc. 133, 10736 (2011)

    Google Scholar 

  14. A. Kumar, J. Brunet, C. Varenne, A. Ndiaye, A. Pauly, Sens. Actuators, B Chem. 230, 320 (2016)

    Google Scholar 

  15. C.B. Yao, Y.D. Zhang, J. Li, D.T. Chen, H.T. Yin, C.Q. Yu, P. Yuan, Opt. Mater. 37, 80 (2014)

    ADS  Google Scholar 

  16. C. Salvo-Comino, C. García-Hernández, C. García-Cabezón, M.L. Rodríguez-Méndez, Sensors 18, 2716 (2018)

    ADS  Google Scholar 

  17. S. Radhakrishnan, S.D. Deshpande, Sensors 2, 185 (2002)

    ADS  Google Scholar 

  18. T. Schwieger, H. Peisert, M.S. Golden, M. Knupfer, J. Fink, Phys. Rev. B 66, 155207 (2002)

    ADS  Google Scholar 

  19. M. Ouyang, X. Hu, X. Shao, L. Chen, W. Li, R. Bai, L. Zhang, X. Lv, A. Tameev, C. Zhang, RSC Adv. 9, 34382 (2019)

    ADS  Google Scholar 

  20. S.S. Mali, D.S. Dalavi, P.N. Bhosale, C.A. Betty, A.K. Chauhan, P.S. Patil, RSC Adv. 2, 2100 (2012)

    ADS  Google Scholar 

  21. M. Della Pirriera, J. Puigdollers, C. Voz, M. Stella, J. Bertomeu, R. Alcubilla, J. Phys. D Appl. Phys. 42, 145102 (2009)

    ADS  Google Scholar 

  22. K.I. Ozoemena, T. Nyokong, Electrochim. Acta 51, 5131 (2006)

    Google Scholar 

  23. D. Liu, Y.T. Long, ACS Appl. Mater. Interfaces. 7, 24063 (2015)

    Google Scholar 

  24. Y. Wang, N. Hu, Z. Zhou, D. Xu, Z. Wang, Z. Yang, H. Wei, E.S.W. Kong, Y. Zhang, J. Mater. Chem. 21, 3779 (2011)

    Google Scholar 

  25. B. Wang, X. Zhou, Y. Wu, Z. Chen, C. He, Sens. Actuators, B Chem. 171–172, 398 (2012)

    Google Scholar 

  26. J. Malig, N. Jux, D. Kiessling, J.J. Cid, P. Vázquez, T. Torres, D.M. Guldi, Angew. Chem. Int. Ed. 50, 3561 (2011)

    Google Scholar 

  27. X. Zhou, X. Wang, B. Wang, Z. Chen, C. He, Y. Wu, Sens. Actuators, B Chem. 193, 340 (2014)

    Google Scholar 

  28. Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Undefined 56, 15421 (2017)

    Google Scholar 

  29. L. Liu, Z. Zhang, X. Liu, X. Xuan, B.I. Yakobson, M.C. Hersam, W. Guo, Undefined 20, 1315 (2020)

    Google Scholar 

  30. Z. Zhang, A.J. Mannix, X. Liu, Z. Hu, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Sci. Adv. 5, 9 (2019). https://doi.org/10.1126/sciadv.aax0246

    Article  Google Scholar 

  31. Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Adv. Func. Mater. 27, 1605059 (2017)

    Google Scholar 

  32. Z. Zhang, E.S. Penev, B.I. Yakobson, Chem. Soc. Rev. 46, 6746 (2017)

    Google Scholar 

  33. P. Ranjan, T.K. Sahu, R. Bhushan, S.S.R.K.C. Yamijala, D.J. Late, P. Kumar, A. Vinu, Adv. Mater. 31, 1900353 (2019)

    Google Scholar 

  34. D. Ma, J. Zhao, J. Xie, F. Zhang, R. Wang, L. Wu, W. Liang, D. Li, Y. Ge, J. Li, Y. Zhang, H. Zhang, Nanoscale Horizons 5, 705 (2020)

    ADS  Google Scholar 

  35. D. Ma, R. Wang, J. Zhao, Q. Chen, L. Wu, D. Li, L. Su, X. Jiang, Z. Luo, Y. Ge, J. Li, Y. Zhang, H. Zhang, Nanoscale 12, 5313 (2020)

    Google Scholar 

  36. H. Li, L. Jing, W. Liu, J. Lin, R.Y. Tay, S.H. Tsang, E.H.T. Teo, ACS Nano 12, 1262 (2018)

    Google Scholar 

  37. M. Tanhaei, A.R. Mahjoub, V. Safarifard, Ultrason. Sonochem. 41, 189 (2018)

    Google Scholar 

  38. W. Hao, G. Das, H.H. Yoon, J. Electroanal. Chem. 747, 143 (2015)

    Google Scholar 

  39. R. Rahmanian, S.A. Mozaffari, Sens. Actuators, B Chem. 207, 772 (2015)

    Google Scholar 

  40. M. Dervisevic, E. Dervisevic, M. Şenel, Sens. Actuators, B Chem. 254, 93 (2018)

    Google Scholar 

  41. S.G. Ansari, R. Wahab, Z.A. Ansari, Y.S. Kim, G. Khang, A. Al-Hajry, H.S. Shin, Sens. Actuators, B Chem. 137, 566 (2009)

    Google Scholar 

  42. S. Selvarajan, A. Suganthi, M. Rajarajan, Ultrason. Sonochem. 42, 183 (2018)

    Google Scholar 

  43. I. Gürol, M. Durmuş, V. Ahsen, Eur. J. Inorg. Chem. 2010, 1220 (2010)

    Google Scholar 

  44. C. Taşaltın, T.A. Türkmen, N. Taşaltın, S. Karakuş, J. Mater. Sci. Mater. Electron. 32(8), 10750 (2021)

    Google Scholar 

  45. Z. Li, T. Zhuang, J. Dong, L. Wang, J. Xia, H. Wang, X. Cui, Z. Wang, Ultrason. Sonochem. 71, 105384 (2021)

    Google Scholar 

  46. F. Peng, S.J. Qin, L.F. Hu, J.Y. Wang, J.M. Yang, X.Q. Chen, G.B. Pan, Chem. Phys. Lett. 652, 6 (2016)

    ADS  Google Scholar 

  47. S.K. Das, A. Bedar, A. Kannan, K. Jasuja, Sci. Rep. 5, 10522 (2015). https://doi.org/10.1038/srep10522

    Article  ADS  Google Scholar 

  48. T.H. Le, Y. Oh, H. Kim, H. Yoon, Chem. Eur. J. 26, 6360 (2020)

    Google Scholar 

  49. G. Sachdeva, S. Kaur, R. Pandey, S.P. Karna, Computation 9(9), 101 (2021)

    Google Scholar 

  50. S. Mustapha, M.M. Ndamitso, A.S. Abdulkareem, J.O. Tijani, D.T. Shuaib, A.K. Mohammed, A. Sumaila, Adv Nat Sci Nanosci Nanotechnol 10, 045013 (2019)

    ADS  Google Scholar 

  51. A.L. James, K. Jasuja, RSC Adv. 7, 1905 (2017)

    ADS  Google Scholar 

  52. S.K. Das, A. Bedar, A. Kannan, K. Jasuja, Sci. Rep. (2015). https://doi.org/10.1038/srep10522

    Article  Google Scholar 

  53. G.R. Monama, K.D. Modibane, K.E. Ramohlola, K.M. Molapo, M.J. Hato, M.D. Makhafola, G. Mashao, S.B. Mdluli, E.I. Iwuoha, Int. J. Hydrogen Energy 44, 18891 (2019)

    Google Scholar 

  54. M. Samanta, M. Mukherjee, U.K. Ghorai, C. Bose, K.K. Chattopadhyay, Mater. Res. Bull. 123, 110725 (2020)

    Google Scholar 

  55. B.B. Topuz, G. Gündüz, B. Mavis, Ü. Çolak, Dyes Pigm. 96, 31 (2013)

    Google Scholar 

  56. F. Sánchez-De La Torre, J. Rivera De La Rosa, B.I. Kharisov, C.J. Lucio-Ortiz, Materials 6, 4324–4344 (2013)

    ADS  Google Scholar 

  57. G. Parakhonskiy, N. Dubrovinskaia, L. Dubrovinsky, S. Mondal, S. van Smaalen, J. Cryst. Growth 321, 162 (2011)

    ADS  Google Scholar 

  58. J. Qin, T. Irifune, H. Dekura, H. Ohfuji, N. Nishiyama, L. Lei, T. Shinmei, Phys. Rev. B Condens. Matter Mater. Phys. 85, 014107 (2012)

    ADS  Google Scholar 

  59. Z.X. Sun, Y.Y. Wu, X.X. Han, G.J. Zhang, X.F. Liu, CrystEngComm 19, 3947 (2017)

    Google Scholar 

  60. C.K. Choi, S.M. Shaban, B.S. Moon, D.G. Pyun, D.H. Kim, Anal. Chim. Acta 1170, 338630 (2021)

    Google Scholar 

  61. B. Öndeş, F. Akpınar, M. Uygun, M. Muti, D. Aktaş Uygun, Microchem. J. 160, 105667 (2021)

    Google Scholar 

  62. R.K. Sajwan, P. Sharma, G.B.V.S. Lakshmi, P.R. Solanki, Mater. Lett. 305, 130794 (2021)

    Google Scholar 

  63. E. Muthusankar, V.K. Ponnusamy, D. Ragupathy, Synth. Met. 254, 134 (2019)

    Google Scholar 

  64. R.-an Doong, H.-m Shih, Biosens. Bioelectron. 25, 1439 (2010)

    Google Scholar 

  65. O. Akhavan, E. Ghaderi, J. Mater. Chem. 21, 12935 (2011)

    Google Scholar 

Download references

Acknowledgements

This study was supported by TUBITAK (Grant Number 120N816).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Selcan Karakuş or Nevin Taşaltın.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial and non-financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güngör, S., Taşaltın, C., Gürol, İ. et al. Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor. Appl. Phys. A 128, 89 (2022). https://doi.org/10.1007/s00339-021-05228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05228-8

Keywords

Navigation