Skip to main content
Log in

Electronic and optical properties of P-substituted tellurene nanoribbons: first principles study

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We propose a quasi-one-dimensional P-substituted tellurene nanoribbon (TeNR) (with sizes ranging from 7 to 5 Å) based on a β-Te monolayer configuration using the first principles of density functional theory (DFT) calculations. This system appears to have outstanding electronic and optical properties as revealed by its energy band structure, density of state (DOS), and optical spectrum. P-substituted TeNR has lower formation energy than that of pristine TeNR, indicating that it is more stable than the pristine TeNR. In the presence or absence of the spin–orbit coupling (SOC), P-substituted TeNRs were semiconductors and their direct bandgaps decrease with increasing bandwidth. The DOS and projected DOS are mainly derived from the contributions of the p orbital electrons of Te and P atoms. The dielectric functions of P-substituted TeNRs exhibited optical anisotropy. The absorption spectrum is selective for the incident light energy, and an absorption peaks in the visible and ultraviolet regions indicate that P-substituted n-TeNRs could not only harvest considerable visible light but also capture ultraviolet light, and the peaks also have a trend of red-shift. These findings on quasi-one-dimensional Te nanostructures effectively extend the realm of group VI elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data and materials applied in the study will be made available from the corresponding author only on academic or other non-business requests.

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Sci 306:666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Yang YE, Yang YR, Yan XH (2012) Universal optical properties of graphane nanoribbons a first-principles study. Physica E 44:1406–1409. https://doi.org/10.1016/j.physe.2012.03.002

    Article  CAS  Google Scholar 

  3. Xu WW, Xu WP, Zhan FY, Laref A, Wang R, Wu XZ (2019) Effects of Stone-Wales defect on the electronic and optical properties of armchair MoS2 nanoribbon: First-principles calculations. J Electron Mater 48:3763–3776. https://doi.org/10.1007/s11664-019-07141-6

    Article  CAS  Google Scholar 

  4. Pang Q, Li L, Zhang CL, Wei XM, Song YL (2015) Structural, electronic and magnetic properties of 3d transition metal atom adsorbed germanene: a first-principles study. Mater Chem Phys 160:96–104. https://doi.org/10.1016/j.matchemphys.2015.04.011

    Article  CAS  Google Scholar 

  5. Shi Z, Cao R, Khan K, Tareen AK, Liu XS, Liang WY, ZhangY MCY, Guo ZN, Luo XL, Zhang H (2020) Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett 12:99–132. https://doi.org/10.1007/s40820-020-00427-z

    Article  CAS  Google Scholar 

  6. Qiao J, Pan Y, Yang F, Wang C, Chai Y, Ji W (2018) Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci Bull 63:159–168. https://doi.org/10.1016/j.scib.2018.01.010

    Article  CAS  Google Scholar 

  7. Liang ZF, Wang Y, Hua CQ, Xiao CC, Chen MG, Jiang Z, Tai RZ, Lu YH, Song F (2019) Electronic structures of ultra-thin tellurium nanoribbon. Nanoscale 11:14134–14140. https://doi.org/10.1039/C9NR04112E

    Article  CAS  Google Scholar 

  8. Apte A, Bianco E, Krishnamoorthy A, Yazdi S, Rao R, Glavin N, Kumazoe H, Varshney V, Roy A, Shimojo F, Ringe E, Kalia RK, Nakano A, Tiwary CS, Vashishta P, Kochat V, Ajayan PM (2018) Polytypism in ultra-thin tellurium. 2D Mater 6:015013(1–9). https://doi.org/10.1088/2053-1583/aae7f6

    Article  CAS  Google Scholar 

  9. Wang Q, Safdar M, Xu K, Mirza M, Wang Z, He J (2014) Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium nanoplates on flexible mica sheets. ACS Nano 8:7497–7505. https://doi.org/10.1021/nn5028104

    Article  CAS  Google Scholar 

  10. Xie Z, Xing C, Huang W, Fan T, Zhao ZLJ, Xiang Y, Guo Z, Li L, Yang Z, Dong B, Qu J, Fan D, Zhang H (2018) Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv Funct Mater 28:1705833(1–11). https://doi.org/10.1002/adfm.201705833

    Article  CAS  Google Scholar 

  11. Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho JH, Jia Y, Zhang ZY (2017) Multivalency-driven formation of Te-based monolayer materials a combined first principles and experimental study. Phys Rev Lett 119:106101–7. https://doi.org/10.1103/physrevlett.119.106101

    Article  CAS  Google Scholar 

  12. Ouyang YJ, Sanvito S, Guo J (2010) Effects of edge chemistry doping on graphene nanoribbon mobility. Surf Sci 605:217–218. https://doi.org/10.1109/drc.2010.5551920

    Article  Google Scholar 

  13. Zhong BN, Fei GT, Fu WB, Gong XX, Gao XD, Zhang L (2016) Solvothermal synthesis, stirring-assisted assembly and photoelectric performance of Te nanowires. Phys Chem Chem Phys 18:32691–32691. https://doi.org/10.1039/c6cp04979f

    Article  CAS  Google Scholar 

  14. Pang Q, Zhang Y, Zhang JM, Ji V, Xu KW (2011) Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale 3:4330–4338. https://doi.org/10.1039/c6cp04979f

    Article  CAS  Google Scholar 

  15. Zhong BN, Fei GT, Fu WB, Gong XX, Xu SH, Gao XD, Zhang DL (2017) Controlled solvothermal synthesis of single-crystal tellurium nanowires, nanotubes and trifold structures and their photoelectrical properties. CrystEngComm 19:2813–2820. https://doi.org/10.1039/c7ce00497d

    Article  CAS  Google Scholar 

  16. Lin CS, Cheng WD, Chai GL, Zhang H (2018) Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements. Phys Chem Chem Phys 20:24250–24256. https://doi.org/10.1039/c8cp04069a

    Article  CAS  Google Scholar 

  17. Zhang W, Wu QS, Yazyev OV, Weng HM, Guo ZX, Cheng WD, Cai GL (2018) Topological phase transitions driven by strain in monolayer tellurium. Phys Rev B 98:115411(1–8). https://doi.org/10.1103/physrevb.98.115411

    Article  CAS  Google Scholar 

  18. Amani M, Tan CL, Zhang G, Zhao CS, Bullock J, Song XH, Hyungjin K, Shrestha VR, Gao Y, Crozier KB, Scott M, Javey A (2018) Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12:7253–7263. https://doi.org/10.1021/acsnano.8b03424

    Article  CAS  Google Scholar 

  19. Wang Y, Xiao CC, Chen MG, Hua CQ, Zou JD, Wu C, Jiang JZ, Yang SYA, Lu YH, Ji W (2018) Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers. Mater Mater Horiz 5:521–528. https://doi.org/10.1039/c8mh00082d

    Article  CAS  Google Scholar 

  20. Wang JJ, Shen H, Yu ZY, Wang SY, ChenYY WuBR, Su WS (2020) Electric field-tunable structural phase transitions in monolayer tellurium. ACS Omega 5:18213–18217. https://doi.org/10.1021/acsomega.0c01833

    Article  CAS  Google Scholar 

  21. Dong YJ, Wang XF, Vasilopoulos P, Zhang MX, Wu XM (2014) Half-metallicity in aluminum-doped zigzag silicene nanoribbons. J Phys D Appl Phys 47:105304(1–6). https://doi.org/10.1088/0022-3727/47/10/105304

    Article  Google Scholar 

  22. Kresse G (1995) Ab initio molecular dynamics for liquid metals. J Non Cryst Solids 192–193:222–229. https://doi.org/10.1016/0022-3093(95)00355-x

    Article  Google Scholar 

  23. Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor-tor transition in germanium. Phys Rev B 49:14251–14269. https://doi.org/10.1103/physrevb.49.14251

    Article  CAS  Google Scholar 

  24. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50. https://doi.org/10.1016/0927-0256(96)00008-0

    Article  CAS  Google Scholar 

  25. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186. https://doi.org/10.1103/physrevb.54.11169

    Article  CAS  Google Scholar 

  26. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented wave method. Phys Rev B 59:1758–1775. https://doi.org/10.1103/physrevb.59.1758

    Article  CAS  Google Scholar 

  27. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  Google Scholar 

  28. Wu BZ, Liu XH, Yin JR, Hyoyoung L (2017) Bulk β-Te to few layered β-tellurenes: indirect to direct band-gap transitions showing semiconducting property. Mater Res Express 4:095902-(1-9). https://doi.org/10.1088/2053-1591/aa8ae3

    Article  CAS  Google Scholar 

  29. Lu DB, Song YL (2018) First principles calculations of optical properties of the armchair SiC nanoribbons with O F and H termination Pramana. J Phys 90:37-(8). https://doi.org/10.1007/s12043-017-1519-4

    Article  CAS  Google Scholar 

  30. Lu DB, Song YL, Huang XY (2019) Electric and optical properties modulations of armchair silicene nanoribbons by transverse electric fields. Curr Appl Phys 19:31–36. https://doi.org/10.1016/j.cap.2018.11.001

    Article  Google Scholar 

  31. Wei W, Yang S, Wang G, Zhang T, Pan W, Cai Z, Yang Y, Zheng L, He P, Wang L, Baktash A, Zhang LL, Wang Y, Ding G, Kang Z, Yakobson BI, Searles DJ, Yuan Q (2021) Bandgap engineering of two-dimensional C3N bilayers. Nat Electron 4:486–494. https://doi.org/10.1038/s41928-021-00602-z

    Article  CAS  Google Scholar 

  32. Khan MJI, Kanwal Z, Latif A, Ahmad J, Akhtar P, Yousaf M, Ullah H (2021) Investigations on electronic structure, magnetic and optical properties of C and Ti co-doped zincblende GaN for optoelectronic applications. Optik 231:166425-(12). https://doi.org/10.1016/j.ijleo.2021.166425

    Article  CAS  Google Scholar 

  33. Chen ZY, Zhao SQ, Zhao HH, Zou YB, Yu CY, Zhong WB (2021) Tetrabutylphosphonium acetate and its eutectic mixtures with common-cation halides as solvents for carbon dioxide capture. Chem Eng J 409:127891(1–9). https://doi.org/10.1016/j.cej.2020.128191

    Article  CAS  Google Scholar 

  34. Agrawal S, Srivastava A, Kaushal A (2022) Bandgap engineering in Ga and P doped armchair graphene nanoribbons: DFT analysis. Mater Today: Proc 48:647–649. https://doi.org/10.1016/j.matpr.2021.05.706

    Article  CAS  Google Scholar 

  35. Guo G, Shi YM, Zhang Y, Deng YX, Du FM, Xie ZX, Tang J, Mao YL (2020) First-principles study on the electronic and magnetic properties of P edge-doped armchair germanium selenide nanoribbon. Comp Mater Sci 172:109348–109354. https://doi.org/10.1016/j.commatsci.2019.109348

    Article  CAS  Google Scholar 

  36. Zhang JM, Song WT, Xu KW, Ji V (2014) The study of the P doped silicene nanoribbons with first-principles. Comp Mater Sci 95:429–434. https://doi.org/10.1016/j.commatsci.2014.08.019

    Article  CAS  Google Scholar 

  37. Saha S, Sinha TP, Mookerjee A (2000) Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO3. Phys Rev B 62:8828–8834. https://doi.org/10.1103/physrevb.62.8828

    Article  CAS  Google Scholar 

  38. Santhibhushan B, Soni M, Srivastava A (2017) Optical properties of boron-group (V) hexagonal nanowires: DFT investigation. Pramana-J Phys 89:14. https://doi.org/10.1007/s12043-017-1406-z

    Article  CAS  Google Scholar 

  39. Fang CY, Wang X, Zhang Q, Zhou JY (2022) First-principles calculations on semiconducting ε-GeS and ε-SnS monolayer nanosheets with photocatalytic activity for sunlight driven water splitting. ACS Appl Nano Mater 5:3900–3912. https://doi.org/10.1021/acsanm.1c04495

    Article  CAS  Google Scholar 

  40. Zhang Q, Wang X, Yang SL (2021) δ-SnS: an emerging bidirectional auxetic direct semiconductor with desirable carrier mobility and high-performance catalytic behavior toward the water-splitting reaction. ACS Appl Mater Interfaces 13:31934–31946. https://doi.org/10.1021/acsami.1c03650

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the Teaching Reform of the Steering Committee of Electronic Information Specialty of the Chinese Ministry of Education (Grant No. 2020-YB-23) and Teaching Research of Higher Education in Henan Province (Grant No. 2019SJGLX379, 2021SJGLX484).

Author information

Authors and Affiliations

Authors

Contributions

Yuling Song: collected references, calculated and analyzed data, conceived and designed paper layouts, and drafted manuscripts. Daobang Lu: supervised the work and presided over the analysis and revision of the manuscript. Xiaoyu Huang: presided over the analysis and revised the manuscript.

Corresponding author

Correspondence to Daobang Lu.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Ethics approval

This article does not contain any studies involving human participants or animals performed by any authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Lu, D. & Huang, X. Electronic and optical properties of P-substituted tellurene nanoribbons: first principles study. J Nanopart Res 24, 231 (2022). https://doi.org/10.1007/s11051-022-05614-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-022-05614-0

Keywords

Navigation