Skip to main content

Advertisement

Log in

A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

By using the well-established CALPHAD methodology, a cobalt-rich eutectic high-entropy alloy is designed and made for the system Al–Co–Cr–Fe–Ni. Microstructural studies show that the designed alloy has a dual FCC/BCC phase structure and is composed of nanostructured lamellar-irregular regions. The mechanical properties of the alloy are investigated by compression test. The ultimate strength and the ductility of the alloy are measured to be 2150 MPa and 40%, respectively. The effect of Al concentration on the microstructure and mechanical properties of the alloy is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004)

    Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6(5), 299–303 (2004)

    Google Scholar 

  3. D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448–511 (2017)

    Google Scholar 

  4. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1–93 (2014)

    Google Scholar 

  5. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19(6), 349–362 (2016)

    Google Scholar 

  6. Y. Lu, Y. Dong, S. Guo, L. Jiang, H. Kang, T. Wang, B. Wen, Z. Wang, J. Jie, Z. Cao, H. Ruan, T. Li, A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci. Rep. 4, 6200 (2014)

    ADS  Google Scholar 

  7. A. Manzoni, H. Daoud, R. Volkl, U. Glatzel, N. Wanderka, Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212–215 (2013)

    Google Scholar 

  8. I.S. Wani, T. Bhattacharjee, S. Sheikh, P.P. Bhattacharjee, S. Guo, N. Tsuji, Tailoring nanostructures and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy using thermo-mechanical processing. Mater. Sci. Eng. A 675, 99–109 (2016)

    Google Scholar 

  9. I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lu, S. Chatterjee, P.P. Bhattacharjee, S. Guo, N. Tsuji, Ultrafine-grained AlCoCrFeNi2.1 eutectic high entropy alloy. Mater. Res. Lett. 4(3), 174–179 (2016)

    Google Scholar 

  10. Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao, T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124, 143–150 (2017)

    Google Scholar 

  11. T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci. Rep. 8, 3276 (2018)

    ADS  Google Scholar 

  12. D. Liu, P. Yu, G. Li, P.K. Liaw, R. Liu, High-temperature high-entropy alloys AlxCo15Cr15Ni70−x based on the Al–Ni binary system. Mater. Sci. Eng. A 724, 283–288 (2018)

    Google Scholar 

  13. X. Jin, Y. Zhou, L. Zhang, X. Du, B. Li, A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties. Mater. Lett. 216, 144–146 (2018)

    Google Scholar 

  14. Y. Lu, H. Jiang, S. Guo, T. Wang, Z. Cao, T. Li, A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91, 124–128 (2017)

    Google Scholar 

  15. H. Jiang, K. Han, X. Gao, Y. Lu, Z. Cao, M.C. Gao, J.A. Hawk, T. Li, A new strategy to design eutectic high-entropy alloys using simple mixture method. Mater. Design 142, 101–105 (2018)

    Google Scholar 

  16. X. Jin, Y. Zhou, L. Zhang, X. Dua, B. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater. Design 143, 49–55 (2018)

    Google Scholar 

  17. Z. Yang, Z. Wang, Q. Wu, T. Zheng, P. Zhao, J. Zhao, J. Chen, Enhancing the mechanical properties of casting eutectic high entropy alloys with Mo addition. Appl. Phys. A 125, 208 (2019)

    ADS  Google Scholar 

  18. C. Zhang, M.C. Gao, CALPHAD modeling of high-entropy alloys, in High-Entropy Alloys: Fundamentals and Applications, 1st edn., ed. by M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang (Springer International Publishing, Cham, 2016), pp. 399–444

    Google Scholar 

  19. C. Zhang, F. Zhang, S. Chen, W. Cao, Computational thermodynamics aided high-entropy alloy design. JOM 64(7), 839–845 (2012)

    Google Scholar 

  20. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, An understanding of high entropy alloys from phase diagram calculations. CALPHAD 45, 1–10 (2014)

    Google Scholar 

  21. O.N. Senkov, J.D. Miller, D.B. Miracles, C. Woodward, Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD 50, 32–48 (2015)

    Google Scholar 

  22. C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, P.K. Liaw, Understanding phase stability of Al–Co–Cr–Fe–Ni high entropy alloys. Mater. Design 109, 425–433 (2016)

    Google Scholar 

  23. M.C. Gao, C. Zhang, P. Gao, F. Zhang, L.Z. Ouyang, M. Widom, J.A. Hawk, Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21(5), 238–251 (2017)

    ADS  Google Scholar 

  24. H. Baker (ed.), ASM Handbook, Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, 1992)

    Google Scholar 

  25. G.V. Raynor, V.G. Rivilin, Critical evaluation of constitution of Aluminium–Cobalt–Iron system. Int. Met. Rev. 27(3), 169–183 (1982)

    Google Scholar 

  26. L. Zhang, Y. Du, Thermodynamic description of the Al–Fe–Ni system over the whole composition and temperature ranges: modeling coupled with key experiment. Comput. Coupling Phase Diagr. Thermochem. 31, 529–540 (2007)

    Google Scholar 

  27. N. Dupin, I. Ansara, B. Sundman, Thermodynamic re-assessment of the ternary system AI–Cr–Ni. Calphad 25(2), 279–298 (2001)

    Google Scholar 

  28. Y. Wang, G. Cacciamani, Thermodynamic modeling of the Al–Cr–Ni system over the entire composition and temperature range. J. Alloys Compd. 688, 422–435 (2016)

    Google Scholar 

  29. M.S. Merchant, M.R. Notis, A. Review, Constitution of the Al–Cr–Ni system. Mater. Sci. Eng. 66, 47–60 (1984)

    Google Scholar 

  30. X. Jin, J. Bi, L. Zhang, Y. Zhou, X. Du, Y. Liang, B. Li, A new CrFeNi2Al eutectic high entropy alloy system with excellent mechanical properties. J. Alloys Compd. 770, 655–661 (2019)

    Google Scholar 

  31. JMatPro® the Materials Property Simulation Package, Sente Software Ltd., Surrey Technology Center, 40 Occam Road, Guildford, UK

  32. N. D’Souza, H.B. Dong, Solidification path in third-generation Ni-based superalloys, with an emphasis on last stage solidification. Scr. Mater. 56(1), 41–44 (2007)

    Google Scholar 

  33. N. Saunders, U.K.Z. Guo, X. Li, A.P. Miodownik, JPh Schillé, Using JMatPro to model materials properties and behavior. JOM 55(12), 60–65 (2003)

    ADS  Google Scholar 

  34. Z. Guo, N. Saunders, A.P. Miodownik, J.P. Schille, Modelling of materials properties and behaviour critical to casting simulation. Mater. Sci. Eng. A 413–414, 465–469 (2005)

    Google Scholar 

  35. N. D’Souza, M. Lekstrom, H.B. Dong, An analysis of measurement of solute segregation in Ni-base superalloys using X-ray spectroscopy. Mater. Sci. Eng. A 490, 258–265 (2008)

    Google Scholar 

  36. Z. Guo, N. Saunders, J.P. Schillé, A.P. Miodownik, Material properties for process simulation. Mater. Sci. Eng. A 499, 7–13 (2009)

    Google Scholar 

  37. J. Yu, X. Li, Modelling of the precipitated phases and properties of Al–Zn–Mg–Cu alloys. J. Phase Equilib. Diffus. 32, 350–360 (2011)

    Google Scholar 

  38. I.S. Wani, T. Bhattacharjee, S. Sheikh, I.T. Clark, M.H. Park, T. Okawa, S. Guo, P.P. Bhattacharjee, N. Tsuji, Cold-rolling and recrystallization textures of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 84, 42–51 (2017)

    Google Scholar 

  39. A. Patel, I. Wani, S.R. Reddy, S. Narayanaswamy, A. Lozinko, R. Saha, S. Guo, P.P. Bhattacharjee, Strain-path controlled microstructure, texture and hardness evolution in cryo-deformed AlCoCrFeNi2.1 eutectic high entropy alloy. Intermetallics 97, 12–21 (2018)

    Google Scholar 

  40. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, J.W. Yeh, Criterion for sigma phase formation in Cr- and V containing high-entropy alloys. Mater. Res. Lett. 1(4), 207–212 (2013)

    Google Scholar 

  41. M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, A.H. Cheng, A second criterion for sigma phase formation in high-entropy alloys. Mater. Res. Lett. 4(2), 90–95 (2016)

    Google Scholar 

  42. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44–51 (2012)

    Google Scholar 

  43. H. Bei, G.M. Pharr, E.P. George, A review of directionally solidified intermetallic composites for high-temperature structural applications. J. Mater. Sci. 39(12), 3975–3984 (2004)

    ADS  Google Scholar 

  44. D.R. Johnson, X.F. Chen, B.F. Oliver, R.D. Noebe, J.D. Whittenberger, Processing and mechanical properties of in situ composites from the NiAlCr and the NiAl(Cr, Mo) eutectic systems. Intermetallics 3(2), 99–113 (1995)

    Google Scholar 

  45. J.R. Davis, Nickel, Cobalt, and Their Alloys (Materials Park, OH, ASM international, 2000)

    Google Scholar 

  46. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications. Entropy 16, 494–525 (2014)

    ADS  Google Scholar 

  47. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010)

    Google Scholar 

  48. O.N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Shafiei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 534 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafiei, A., Rajabi, S. A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni. Appl. Phys. A 125, 783 (2019). https://doi.org/10.1007/s00339-019-3084-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3084-9

Navigation