Skip to main content
Log in

Structural, dielectric and magnetic characteristics of Mn-substituted Bi0.80Nd0.20FeO3 multiferroics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, investigations have been focused on modified BiFeO3 multiferroics for obtaining improved physical properties. Keeping this in view, multiferroics having composition Bi0.80Nd0.20Fe1 − xMnxO3 (x = 0.01, 0.03 and 0.05) have been synthesized using solid-state reaction method. The crystal structure was examined by X-ray diffraction technique and Rietveld refinement. All unit cells were described by a combination of rhombohedral (R3c) and orthorhombic (Pbnm) phase. Increasing Mn content results in phase transformation with increasing orthorhombic character and major contribution by rhombohedral symmetry for all samples. Dielectric measurements carried out by impedance/gain phase analyzer in the frequency range from 10 Hz to 1 MHz. Dielectric constant (ɛʹ) and loss tangent (tan δ) show dispersion in the lower frequency range. The characteristics of the Nyquist plot confirmed the non-Debye type of relaxation processes with negative temperature coefficient behaviour of resistance (NTCR) in the ceramics. A strong variation in impedance is observed with Mn content also confirmed by conductivity analysis. The variation of ‘s’ with temperature described that conduction mechanism is overlapping of large polaron tunnelling for x = 0.01, 0.03 and for x = 0.05 the appropriate mechanism is small polaron tunnelling. Magnetic measurements indicate the change in ferromagnetic character which might be due to a small change in structural parameters and maximum remanent magnetization is Mr = 0.023 emu/g and coercive field is Hc = 0.760 kOe for x = 0.05. These prepared materials with improved multiferroic properties may lead to many technical applications, such as sensors, transducers and memory devices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Anjum, R. Kumar, S. Mollah, D.K. Shukla, S. Kumar, C.G. Lee, Structural, dielectric, and magnetic properties of La0.8Bi0.2Fe1−xMnxO3 (0.0 ≤ x ≤ 0.4) multiferroics. J. Appl. Phys. 107, 103916 (2010)

    ADS  Google Scholar 

  2. Y.P. Jiang, X.G. Tang, Q.X. Liu, D.G. Chen, C.B. Ma, Improvement of electrical conductivity and leakage current in co-precipitation derived Nd-doping BiFeO3 ceramics. J. Mater. Sci. Mater. Electron. 25, 495–499 (2014)

    Google Scholar 

  3. V.A. Khomchenko, I.O. Troyanchuk, M.I. Kovetskaya, M. Kopcewicz, J.A. Paixão, Effect of Mn substitution on crystal structure and magnetic properties of Bi1−xPrxFeO3 multiferroics. J. Phys. D. Appl. Phys. 45, 045302 (2012)

    ADS  Google Scholar 

  4. R. Dahiya, A. Agarwal, S. Sanghi, A. Hooda, P. Godara, Journal of magnetism and magnetic materials structural, magnetic and dielectric properties of Sr and V doped BiFeO3 multiferroics. J. Magn. Magn. Mater. 385, 175–181 (2015)

    ADS  Google Scholar 

  5. L. Zhai, Y.G. Shi, S.L. Tang, L.Y. Lv, Y.W. Du, Large magnetic coercive field in Bi09La01Fe0.98Nb0.02O3 polycrystalline compound. J. Phys. D: Appl. Phys. 42, 165004 (2009)

    ADS  Google Scholar 

  6. I.V. Lisnevskaya, I.A. Bobrova, T.G. Lupeiko, Synthesis of magnetic and multiferroic materials from polyvinyl alcohol-based gels. J. Magn. Magn. Mater. 397, 86–95 (2016)

    ADS  Google Scholar 

  7. R.L. Contel, Z. Xiao, C. Chen, C.V. Stan, J. Gorchon, A.E. Ghazaly, M.E. Nowakowski, H. Sohn, A. Pattabi, A. Scholl, N. Tamura, A. Sepulveda, G.P. Carman, R.N. Candler, J. Bokor, Influence of non-uniform micron-scale strain distributions on the electrical reorientation of magnetic micro-structures in a composite multiferroic heterostructure. Nano Lett. 18, 1952–1961 (2018)

    ADS  Google Scholar 

  8. I.V. Lisnevskaya, T.G. Lupeiko, E.A. Bikyashev, Synthesis of multiferroics BiFe0.5B0.5O3. Russ. J. Inorg. Chem. 60, 140–146 (2015)

    Google Scholar 

  9. A. K. Behera, N. K. Mohanty, S. K. Satpathy, B. Behera, and P. Nayak, Effect of rare earth doping on impedance, modulus and conductivity properties of multiferroic, composites: Acta Metall. Sin. (English Lett.) 5 (2015)

  10. S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, S. Khasa, Improved structural, dielectric and magnetic properties of Ca2+ and Nb5+ co-substituted BiFeO3 multiferroics. J. Alloys Compd. 722, 606–616 (2017)

    Google Scholar 

  11. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, W. Cai, A comparative study on the structural, dielectric and multiferroic properties of Co0.6Cu0.3Zn0.1Fe2O4/Ba0.9Sr0.1Zr0.1Ti0.9O3 composite ceramics. Compo. B Eng. 166, 204–212 (2019)

    Google Scholar 

  12. R. Gaoa, Z. Wanga, G. Chena, X. Denga, W. Caia, C. Fua, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites, Ceramics International, 44, pp.S84-S87

  13. C.W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    ADS  Google Scholar 

  14. M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015)

    ADS  Google Scholar 

  15. N. Kumar, A. Shukla, R.N. Choudhary, Development of lead-free multifunctional materials Bi(Co0.45Ti0.45Fe0.10)O3. Progr. Nat. Sci.: Mater. Int. 28, 304–314 (2018)

    Google Scholar 

  16. Y. Slimani, B. Unal, E. Hannachi, A. Selmi, M.A. Almessiere, M. Nawaz, A. Baykal, I. Ercan, M. Yildiz, Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3-SrTiO3/(SiO2)x nanocomposites. Ceram. Int. 45, 11989–12000 (2019)

    Google Scholar 

  17. Y. Slimani, B. Unal, M.A. Almessiere, E. Hannachi, G. Yasin, A. Baykal, I. Ercan, Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics. J. Mater. Sci: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03317-7

    Article  Google Scholar 

  18. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3-BiFeO3 solid solution. J. Alloys Compd. 747, 895–904 (2018)

    Google Scholar 

  19. Y. Slimani, M.A. Almessiere, S.E. Shirsath, E. Hannachi, G. Yasin, A. Baykal, B. Ozçelik, I. Ercan, Investigation of structural, morphological, optical, magnetic and dielectric properties of (1–x)BaTiO3/xSr0.92Ca0.04Mg0.04Fe12O19 composites. J. Magn. Magn. Mater. 510, 166933 (2020)

    Google Scholar 

  20. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic properties of (Cd, Ti) modified BiFeO3. Phys. Lett. A (2017). https://doi.org/10.1016/j.physleta.2017.06.012

    Article  Google Scholar 

  21. N. Kumar, A. Shukla, Processing and characterization of Cd/Ti co-substituted BiFeO3 nanoceramics. Int. J. Mod. Phys. B 32, 1840069 (2018)

    ADS  Google Scholar 

  22. G.L. Yuan, S.W. Or, H.L.W. Chan, Raman scattering spectra and ferroelectric properties of 1−xNdxFeO3 (x = 0–0.20) multiferroic ceramics. J. Appl. Phys. 101, 64101 (2007)

    Google Scholar 

  23. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01284-2

    Article  Google Scholar 

  24. I.V. Lisnevskaya, K.V. Myagkaya, V.V. Butova, V.V. Shapovalov, Y.V. Rusalev, H.Y. Zahran, I.S. Yahia, A.V. Soldatov, Preferences of the end members of the lanthanide series for A and B sites in BiFeO3. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2019.11.109

    Article  Google Scholar 

  25. M. Rangi, S. Sanghi, S. Jangra, K. Kaswan, A. Agarwal, Effect of Mn doping on crystal structure, dielectric and magnetic ordering of Bi0.8Ba0.2FeO3 multiferroic. Ceram. Int. 42, 5403–5411 (2016)

    Google Scholar 

  26. I. Sosnowska, T.P. Neumaier, E. Steichele, Spiral magnetic ordering in bismuth ferrite. J. Phys. C: Solid State Phys. 15, 4835–4846 (1982)

    ADS  Google Scholar 

  27. S. Karimi, I.M. Reaney, I. Levin, I. Sterianou, Nd-doped BiFeO3 ceramics with antipolar order. Appl. Phys. Lett. 94, 112903 (2009)

    ADS  Google Scholar 

  28. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6359-y

    Article  Google Scholar 

  29. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magneto dielectric and impedance spectroscopic studies of multiferroics BiFeO3–BaTiO3 ceramics. Mater. Sci. Eng. B 176, 540–547 (2011)

    Google Scholar 

  30. K. Sardar, J. Hong, G. Catalan, P.K. Biswas, M.R. Lees, R.I. Walton, J.F. Scott, S.A.T. Redfern, Structural, spectroscopic, magnetic and electrical characterization of Ca-doped polycrystalline bismuth ferrite, Bi1− xCaxFeO3−x/2 (x ≤ 0.1). J. Phys.: Condens. Matter 24, 045905 (2012)

    ADS  Google Scholar 

  31. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution. RSC Adv. 8, 36939–36950 (2018)

    ADS  Google Scholar 

  32. Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang, X. Liu, B. Yu, X. Zhao, Effects of Nd and high-valence Mn co-doping on the electrical and magnetic properties of multiferroic BiFeO3 ceramics. Solid State Commun. 150, 1088–1091 (2010)

    ADS  Google Scholar 

  33. R. Singh, G.D. Dwivedi, P. Shahi, D. Kumar, O. Prakash, A.K. Ghosh, S. Chatterjee, Effect of Pr- and Nd- doping on structural, dielectric, and magnetic properties of multiferroic Bi0.8La0.2Fe0.9Mn0.1O3. J. Appl. Phys. 115, 134102 (2014)

    ADS  Google Scholar 

  34. P. Uniyal, K.L. Yadav, Pr doped bismuth ferrite ceramics with enhanced Multiferroics properties. J. Phys. Condens. Matter 21, 405901–405906 (2009)

    Google Scholar 

  35. H. Singh, K.L. Yadav, Dielectric, magnetic and magnetoelectric properties of La and Nb codoped bismuth ferrite. J. Phys. Condens. Matter 23, 385901 (2011)

    ADS  Google Scholar 

  36. S.N. Tripathy, D.K. Pradhan, K.K. Mishra, S. Sen, R. Palai, M. Paulch, J.F. Scott, R.S. Katiyar, D.K. Pradhan, Phase transition and enhanced magneto-dielectric response in BiFeO3-DyMnO3 multiferroics. J. Appl. Phys. 117, 144103 (2015)

    ADS  Google Scholar 

  37. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, Crystal structure refinement, dielectric and magnetic properties of Sm modified BiFeO3 multiferroic. J. Mol. Struct. 1097, 207–213 (2015)

    ADS  Google Scholar 

  38. S. Pattanayak, R.N.P. Choudhary, D. Pattanayak, A comparative study of structural, electrical and magnetic properties rare-earth (Dy and Nd)-modified BiFeO3. J. Mater. Sci. Mater. Electron. 25, 3854–3861 (2014)

    Google Scholar 

  39. V.A. Khomchenko, I.O. Troyanchuk, D.V. Karpinsky, S. Das, V.S. Amaral, M. Tovar, V. Sikolenko, J.A. Paixão, Structural transitions and unusual magnetic behavior in Mn-doped Bi1−xLaxFeO3 perovskites. J. Appl. Phys. 112, 084102 (2012)

    ADS  Google Scholar 

  40. V.A. Khomchenko, L.C.J. Pereira, J.A. Paixão, Structural and magnetic phase transitions in Bi1−xNdxFe1−xMnxO3 multiferroics. J. Appl. Phys. 115, 034102 (2014)

    ADS  Google Scholar 

  41. V.R. Palkar, D.C. Kundaliya, S.K. Malik, Effect of Mn substitution on magnetoelectric properties of bismuth ferrite system. J. Appl. Phys. 93, 4337–4339 (2003)

    ADS  Google Scholar 

  42. A.P.B. Selvadurai, V. Pazhanivelu, R. Murugaraj, Structural, mangnetic, optical and electrical properties of Ba substituted BiFeO3. J. Supercond. Nov. Magn. 27, 839–844 (2014)

    Google Scholar 

  43. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, Magnetic enhancement across a ferroelectric: antiferroelectric phase boundary in Bi1−xNdxFeO3. J. Appl. Phys. 111, 053927 (2012)

    ADS  Google Scholar 

  44. A. Ianculescu, F.P. Gheorghiu, P. Postolache, O. Oprea, L. Mitoseriu, The role of doping on the structural and functional properties of BiFe1−xMnxO3 magnetoelectric ceramics. J. Alloys Compd. 504, 420–426 (2010)

    Google Scholar 

  45. Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, M. Mumtaz, A. Baykal, Study of tungsten oxide effect on the performance of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 30, 13509–13518 (2019)

    Google Scholar 

  46. S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3–PbTiO3 electronic system. Appl. Phys. A 122, 1–9 (2016)

    Google Scholar 

  47. H. Singh, K.L. Yadav, Effect of Nb substitution on the structural, dielectric and magnetic properties of multiferroic BiFe1−xNbxO3 ceramics. Mater. Chem. Phys. 132, 17–21 (2012)

    Google Scholar 

  48. S. Pattanayak, B.N. Parida, P.R. Das, R.N.P. Choudhary, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A Mater. Sci. process. 112, 387–395 (2013)

    ADS  Google Scholar 

  49. K. Kaswan, A. Agarwal, S. Sanghi, M. Rangi, S. Jangra, A. Kumar, Crystal structure refinement, enhanced magnetic and dielectric properties of Na0.5Bi0.5TiO3 modified Bi0.8Ba0.2FeO3 ceramics. Ceram. Int. 43, 4622–4629 (2017)

    Google Scholar 

  50. S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Structural, dielectric and impedance characteristics of lanthanum-modified BiFeO3–PbTiO3 electronic system. Appl. Phys. A Mater. Sci. Process. 604, 1–9 (2016)

    Google Scholar 

  51. R. Das, T. Sarkar, K. Mandal, Multiferroic properties of Ba2+ and Gd3+ co-doped bismuth ferrite: magnetic, ferroelectric and impedance spectroscopic analysis. J. Phys. D. Appl. Phys. 45, 455002 (2012)

    Google Scholar 

  52. A.A. Reetu, S.S. Ashima, N Ahlawat, Improved dielectric and magnetic properties of Ti modified BiCaFeO3 multiferroic ceramics. J. Appl. Phys. 113, 023908 (2013)

    ADS  Google Scholar 

  53. S. Dash, R.P.N. Choudhary, P.R. Das, A. Kumar, Effect of KNbO3 modification on structural, electrical and magnetic properties of BiFeO3. Appl. Phys. A 118, 1023–1031 (2015)

    ADS  Google Scholar 

  54. I.O. Troyanchuk, O.S. Mantytskaya, A.N. Chobot, N.V. Tereshko, Magnetic properties of multiferroics Bi1−xAxFeO3−x/2 (A = Ca, Sr, Pb, Ba). Phys. Solid State 51, 2105–2108 (2009)

    ADS  Google Scholar 

  55. P. Godara, A. Agarwal, N. Ahlawat, S. Sanghi, R. Dahiya, Crystal structure transformation, dielectric and magnetic properties of Ba and Co modified BiFeO3 multiferroic. J. Alloys Compd. 594, 175–181 (2014)

    Google Scholar 

  56. W. Lui, G. Tan, G. Dong, X. Yan, W. Ye, H. Ren, A. Xia, Structure transition and multiferroics properties of Mn-doped BiFeO3 thin films. J. Mater. Sci.: Mater. Electron. 25, 723–729 (2014)

    Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Science and Technology (DST), Government of India, for providing XRD facility through FIST scheme and S. S. is also thankful to DST, New Delhi, for providing funds under PURSE program vide grant number SR/PURSE Phase 2/40(G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujata Sanghi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, S., Sanghi, S., Agarwal, A. et al. Structural, dielectric and magnetic characteristics of Mn-substituted Bi0.80Nd0.20FeO3 multiferroics. Appl. Phys. A 127, 534 (2021). https://doi.org/10.1007/s00339-021-04684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04684-6

Keywords

Navigation