Skip to main content
Log in

Effect of Temperature on the Electrical and Current Transport Properties of Au/Nd2O3/n-GaN Metal/Interlayer/Semiconductor (MIS) Junction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Au/Nd2O3/n-type GaN metal/interlayer/semiconductor (MIS) junctions were fabricated with high-k rare-earth oxide interlayer and explored its electrical properties in the wide temperature range of 150–400 K. An anomalous decrease in barrier height and an increase in the ideality factor with a decrease in the temperature were observed. The anomalous barrier height and ideality factor are ascribed to a role of barrier inhomogeneities at the interface of MIS junction assuming a double Gaussian distribution of barrier heights in the temperature ranges of 150–225 K and 225–400 K. Double Gaussian distribution giving mean barrier heights of 0.84 eV and 1.23 eV and standard deviations of 0.0085 V and 0.0187 V for the two temperature regions. A modified conventional energy plot gives mean barrier height \(\left( {\overline{\Phi }_{bo} } \right)\) and Richardson constant (A*) as 0. eV and 13.44 Acm−2 K−2 (150–225 K) and 1.23 eV and 22.85 Acm−2 K−2 (250–400 K), respectively. The estimated A* value in the temperature range of 250–400 K was closely matched with the theoretical value of n-type GaN. Moreover, results express that the obtained interface state density of the MIS junction decreases with increasing temperature. Results explained that the reverse current conduction governed by Poole–Frenkel emission at the temperature range of 150–225 K and Schottky emission at 250–400 K, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.-H. Chao, L.-H. Yeh, R.T. Wu, K. Kawagishi, S.-C. Hsu, RSC. Adv. 10, 16284 (2020)

    Article  ADS  Google Scholar 

  2. M.S.P. Reddy, H. Park, J.-H. Lee, Opt. Mater. 76, 302 (2018)

    Article  ADS  Google Scholar 

  3. H.-S. Kang, M.S.P. Reddy, D.-S. Kim, K.-W. Kim, J.-B. Ha, Y.-S. Lee, H.-C. Choi, J.-H. Lee, J. Phys. D Appl. Phys. 46, 155101 (2013)

    Article  ADS  Google Scholar 

  4. F. Mao, J. Hong, H. Wang, Y. Chen, C. Jing, P. Yang, J.W. Tomm, J. Chu, F. Yue, AIP Adv. 10, 055311 (2020)

    Article  ADS  Google Scholar 

  5. P.T. Puneetha, M.S.P. Reddy, Y.-W. Lee, S.-H. Jeong, R. Lokanadham, C. Park, A.G. Pradeep, V.R. Reddy, J. Mater. Sci. Mater. Electron. 28, 16903 (2017)

    Article  Google Scholar 

  6. D. Chen, Z. Liu, J. Liang, L. Wan, Z. Xie, G. Li, J. Mater. Chem. C 7, 12075 (2019)

    Article  Google Scholar 

  7. M.S.P. Reddy, P.T. Puneetha, V.R. Reddy, J.-H. Lee, S.-H. Jeong, C. Park, J. Electron. Mater. 45, 5455 (2016)

    Google Scholar 

  8. V.N. Reddy, M.S.P. Reddy, K.R. Gunasekhar, J.-H. Lee, Appl. Phys. A. 124, 291 (2018)

    Article  ADS  Google Scholar 

  9. C.V. Prasad, M.S.P. Reddy, V.R. Reddy, C. Park, Appl. Surf. Sci. 427, 670 (2018)

    Article  ADS  Google Scholar 

  10. M. Uma, M.S.P. Reddy, K.R. Reddy, V.R. Reddy, Vacuum 174, 109201 (2020)

    Article  ADS  Google Scholar 

  11. R.C. Vilao, M.A. Curado, H.V. Alberto, J.M. Gil, J.A. Paixao, J.S. Lord, A. Weidinger, Phys. Rev. B 100, 205203 (2019)

    Article  ADS  Google Scholar 

  12. S. Jiang, J. Liu, L. Bai, X. Li, Y. Li, S. He, S. Yan, D. Liang, AIP Adv. 8, 025019 (2018)

    Article  ADS  Google Scholar 

  13. H. Nishikawa, S. Minami, Electrochem. Acta. 24, 339 (1979)

    Article  Google Scholar 

  14. A.A. Dakhel, Phys. Stat. Sol. A 201, 745 (2004)

    Article  ADS  Google Scholar 

  15. V.S. Dharmadhikari, Thin Solid Films 103, 311 (1983)

    Article  ADS  Google Scholar 

  16. V.S. Dharmadhikari, A. Goswami, Thin Solid Films 87, 119 (1982)

    Article  ADS  Google Scholar 

  17. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).

    Google Scholar 

  18. B.P. Lakshmi, M.S.P. Reddy, A.A. Kumar, V.R. Reddy, Curr. Appl. Phys. 12, 765 (2012)

    Article  ADS  Google Scholar 

  19. S. Chand, Semicond. Sci. Technol. 19, 82 (2004)

    Article  ADS  Google Scholar 

  20. S. Zeyrek, S. Altindal, H. Yuzer, M.M. Bulbul, Appl. Surf. Sci. 252, 2999 (2006)

    Article  ADS  Google Scholar 

  21. S. Karatas, S. Altindal, M. Cakar, Phys. B. 357, 386 (2005)

    Article  ADS  Google Scholar 

  22. A. Turut, N. Yalcm, M. Saglam, Solid State Eelctron. 35, 835 (1992)

    Article  ADS  Google Scholar 

  23. R.F. Schmitsdorf, T.U. Kampen, W. Monch, Surf. Sci. 324, 249 (1995)

    Article  ADS  Google Scholar 

  24. J.P. Sullivan, R.T. Tung, M.R. Pinto, M.R. Graham, J. Appl. Phys. 70, 7403 (1991)

    Article  ADS  Google Scholar 

  25. Y.P. Song, R.L.V. Meirhaeghe, W.H. Laflere, F. Cardon, Solid State Electron. 29, 633 (1986)

    Article  ADS  Google Scholar 

  26. S. Chand, J. Kumar, Semicond. Sci. Technol. 11, 1203 (1996)

    Article  ADS  Google Scholar 

  27. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69, 1522 (1991)

    Article  ADS  Google Scholar 

  28. S. Karatas, S. Altindal, A. Turut, A. Ozmen, Appl. Surf. Sci. 217, 250 (2003)

    Article  ADS  Google Scholar 

  29. H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)

    Article  ADS  Google Scholar 

  30. Z. Khurelbaatar, K.-H. Shim, J. Cho, H. Hong, V. Rajagopal Reddy, C.-J. Choi, Mater. Trans. 56(1), 10 (2015)

    Article  Google Scholar 

  31. S. Alialy, S. Altindal, E.E. Tanrikulu, D.E. Yildiz, J. Appl. Phys. 116, 083709 (2014)

    Article  ADS  Google Scholar 

  32. S.A. Yeriskin, M. Balbasi, S. Demirezen, Indian J. Phys. 91, 421 (2017)

    Article  ADS  Google Scholar 

  33. K. Akkilic, Y.S. Ocak, T. Kilicoglu, N.B. Bouiadjra, M. Amrani, L. Bideux, B. Gruzza, Mater. Sci. Eng. B 55, 162 (1998)

    Article  Google Scholar 

  34. A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, B. Abay, Phys. B 205, 41 (1995)

    Article  ADS  Google Scholar 

  35. M. Mamor, J. Phys. Condens. Matter. 21, 335802 (2009)

    Article  Google Scholar 

  36. M.S.P. Reddy, H.-S. Kang, J.-H. Lee, V.R. Reddy, J.-S. Jang, J. Appl. Polym. Sci. 131, 39773 (2014)

    Google Scholar 

  37. M. Hussein Al-Dharob, H. Elif Lapa, A. Kokce, A. Faruk Ozdemir, D. Ali Aldemir, S. Altındal, Mater. Sci. Semicond. Process. 85, 98 (2018)

    Article  Google Scholar 

  38. J. Lin, S. Banerjee, J. Lee, C. Teng, I.E.E.E. Electron, Device Lett. 11, 191 (1990)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea funded by the Ministry of Science, ICT and Fusion Research (NRF-2018R1D1A1B07040603) and 4BK21 funded by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Herie Park or V. Rajagopal Reddy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy, M.S.P., Park, H. & Reddy, V.R. Effect of Temperature on the Electrical and Current Transport Properties of Au/Nd2O3/n-GaN Metal/Interlayer/Semiconductor (MIS) Junction. Appl. Phys. A 127, 146 (2021). https://doi.org/10.1007/s00339-021-04302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04302-5

Keywords

Navigation