Skip to main content
Log in

Photostability and electrical and magnetic properties of cobalt oxide nanoparticles through biological mechanism of endophytic fungus Aspergillus nidulans

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study elaborates magnetic and electrical properties of greenly synthesized cobalt oxide (Co3O4) nanoparticles through endophytic fungus Aspergillus nidulans isolated from medicinal plant Nothapodytes foetida, which examines the ability of the nanoparticles to be magnetized and electrified, being one of the yardsticks for energy application. On increasing the precursor concentration from 2 to 10 mM, there is a shift in paramagnetic to weak ferromagnetic behavior of nanoparticles with the increase in saturation magnetization (Ms) from 0.161 to 7.75 emu/g. Frequency dependence of dielectric constant is found to increase with an increase in frequency, and the aforementioned nanoparticles can be used as a dielectric up to 1,50,000 Hz as dissipation factor is lesser than one. Besides, photostability study has indicated that the particles are stable for at least 45 days. Through liquid chromatography–mass spectrometry (LC–MS) analysis, phytochelatins are identified to be involved in the biosynthesis of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. S. Sagadevan, J. Mat, Sci. Eng. 4(3), 1000172 (2015)

    Google Scholar 

  2. U. Manzoor, M. Islam, L. Tabassam, S.U. Rahman, Physica E. 41(9), 1669–1672 (2009)

    Article  ADS  Google Scholar 

  3. M.S. Elsidigg, H.M. Ahmed, R. Mohamed, H. Suliman, Int. J. Softw. Hardw. Res. Eng. 5(6), 49–56 (2017)

    Google Scholar 

  4. S.L. Sharifi, H.R. Shakur, A. Mirzaei, A. Salmani, M.H. Hosseini, Int. J. Nanosci. Nanotechnol. 9(1), 51–58 (2013)

    Google Scholar 

  5. M. Salavati-Niasari, A. Khansari, F. Davar, Inorg. Chim. Acta 362(14), 4937–4942 (2009)

    Article  Google Scholar 

  6. M.T. Makhlouf, B.M. Abu-Zied, T.H. Mansoure, J Nanopart. Res. 384350, 7 (2013). https://doi.org/10.1155/2013/384350

    Article  Google Scholar 

  7. F. Manteghi, S.H. Kazemi, M. Peyvandipour, A. Asghari, RSC Adv. 5, 76458–76463 (2015)

    Article  Google Scholar 

  8. A.S. Vijayanandan, R.M. Balakrishnan, Data Brief 19, 1941–1947 (2018)

    Article  Google Scholar 

  9. R.S.K. Valappil, A.S. Vijayanandan, R.M. Balakrishnan, J. Water, Supply Res. T. (2019). https://doi.org/10.2166/aqua.2019.086

    Article  Google Scholar 

  10. S. Beena, S. Manoj, I.O.P. Conf, Ser. Mater. Sci. Eng. 73, 012068 (2015)

    Google Scholar 

  11. J.H. Joshi, D.K. Kanchan, M.J. Joshi, H.O. Jethva, K.D. Parikh, Mat. Res. Bull. 93, 63–73 (2017)

    Article  Google Scholar 

  12. D. Radziuk, A. Skirtach, G. Sukhorukov, D. Shchukin, H. Mohwald, Macromol. Rapid Commun. 28, 848–855 (2007)

    Article  Google Scholar 

  13. A.B. Seabra, N. Duran, Metals. 5(2), 934–975 (2015)

    Article  Google Scholar 

  14. A. Yadav, K. Kon, G. Kratosova, N. Duan, A.W. Ingle, M. Rai, Biotechnol. Lett. 37(11), 2099–2120 (2015)

    Article  Google Scholar 

  15. P. Uddandarao, R.M. Balakrishnan, Mat. Sci. Eng. B. 207, 26–32 (2016)

    Article  Google Scholar 

  16. J.R. Koduru, S.K. Kailasa, J.R. Bhamore, K.H. Kim, T. Dutta, K. Vellingiri, Adv. in Colloid Interface Sci. 256, 326–339 (2018)

    Article  Google Scholar 

  17. G. Yang, H. Li, Mater. Lett. 62(14), 2189–2191 (2008)

    Article  Google Scholar 

  18. K. Agilandeswari, A. Rubankumar, Synth. React. Inorg. M. 46, 502–506 (2015)

    Article  Google Scholar 

  19. P. Sahoo, H. Djieutedjeu, P.F.P. Poudeu, J. Mater, Chem. A 1, 15022–150230 (2013)

    Google Scholar 

  20. U. Kumar, A. Shete, A.S. Harle, O. Kasyutich, W. Schwarzacher, A. Pundle, P. Poddar, Chem. Mater. 20(4), 1484–1491 (2008)

    Article  Google Scholar 

  21. H. Shim, Y. Jin, S. Seo, S. Lee, D. Kim, ACS Nano 5(1), 443–449 (2011)

    Article  Google Scholar 

  22. A. Diallo, A.C. Beye, T.B. Doyle, E. Park, M. Maaza, Green Chem. Lett. Rev. 8(3–4), 30–36 (2015)

    Article  Google Scholar 

  23. N.M. Khalil, M. Ovais, M. Ullah, M. Ali, Z.K. Shinwari, M. Maaza, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.07.004

    Article  Google Scholar 

  24. V. Bhalla, H. Tyagi, Sustain. Energy. Technol. Assess. 24, 45–54 (2017)

    Google Scholar 

  25. A.S. Vijayanandan, R.M. Balakrishnan, J. Environ. Manage. 218, 442–450 (2018)

    Article  Google Scholar 

  26. H.R. Ghorbani, F.P. Mehr, A.K. Poor, Orient J. Chem. 31(1), 527–529 (2015)

    Article  Google Scholar 

  27. H. Kumar, P. Sangwan, Manisha, Advances in Applied Physical and Chemical Sciences—a Sustainable Approach (Excellent Publishing House, New Delhi, 2014), pp 99–104 (2014).

  28. Y. Chen, Y. Zhang, S. Fu, Synthesis and characterization of Co3O4 hollow spheres. Mat. Lett. 61(3), 701–705 (2007)

    Article  Google Scholar 

  29. I. Luisetto, F. Pepe, E. Bemporad, J. Nanopart. Res. 10(1), 59–67 (2008)

    Article  ADS  Google Scholar 

  30. A.K. Vala, Environ. Prog. Sustain. Energ. 34(1), 194–197 (2004)

    Google Scholar 

  31. Z.N. Kayani, F. Saleemi, F. Batool, Appl. Phys. A. 119, 713–720 (2015)

    Article  ADS  Google Scholar 

  32. Y. Yin, Z.-Y. Li, Z. Zhong, B. Gates, Y. Xia, S. Venkateswaran, J. Mater. Chem. 12, 522–527 (2002)

    Article  Google Scholar 

  33. V.V. Pinto, M.J. Ferreira, R. Silva, H.A. Santos, F. Silva, C.M. Pereira, Colloids Surf. A: Physicochem. Eng. Asp. 364, 19–25 (2010)

    Article  Google Scholar 

  34. Y. Koseoglu, F. Kurtulus, H. Kockar, H. Guler, O. Karaagac, S. Kazan, B. Aktas, J. Supercond. Nov. Magn. 25, 2783–2787 (2012)

    Article  Google Scholar 

  35. F. Moro, S.V.Y. Tang, F. Tuna, E. Lester, J. Magn. Magn. Mater. 348, 1–7 (2013)

    Article  ADS  Google Scholar 

  36. C. Ramamoorthy, V. Rajendran, Optik. 145, 330–335 (2017)

    Article  ADS  Google Scholar 

  37. M. Yarestani, A.D. Khalaji, A. Rohani, D. Das, J. Sci. I. R. Iran 25(4), 339–343 (2014)

    Google Scholar 

  38. P. Sharma, A. Sharma, Int. J. Mater. Sci. Eng. 4(4), 208–214 (2016)

    Google Scholar 

  39. S.R. Gawali, S. Pandit, J. Pant, Int. J Chemtech. Res. 6(3), 2178–2180 (2014)

    Google Scholar 

  40. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, J. Solid State Chem. 213, 57–64 (2014)

    Article  ADS  Google Scholar 

  41. M. Mansournia, N. Rakhshan, J. Mol, Struct. 1125, 714–720 (2016)

    Google Scholar 

  42. D.D.M. Prabaharan, K. Sadaiyandi, K. Mahendran, S. Sagadevan, Appl. Phys. A 123, 264 (2017). https://doi.org/10.1007/s00339-017-0786-8

    Article  ADS  Google Scholar 

  43. A.M. Abdelghany, A.H. Oraby, M.O. Farea, Phys B 560, 162–173 (2019)

    Article  ADS  Google Scholar 

  44. R. Zamiri, H.A. Ahangar, A. Kaushal, A. Zakaria, G. Zamiri, D. Tobaldi, J.M.F. Ferreira, PLoS ONE (2015). https://doi.org/10.1371/journal.pone.0122989

  45. D.D.M. Prabaharan, K. Sadaiyandi, K. Mahendran, S. Sagadevan, Mater. Res. 19(2), 478–482 (2016)

    Article  Google Scholar 

  46. S.A. Masti, A.K. Sharma, P.N. Vasambekar, Adv. Appl. Sci. Res. 4(4), 335–339 (2013)

    Google Scholar 

  47. M. Kamran, W. Shoukat, K. Nadeem, S.S. Hussain, F. Zeb, S. Hussain, Mater. Res. Express 6, 076106 (2019)

    Article  ADS  Google Scholar 

  48. S. Godara, N. Sinha, G. Ray, B. Kumar, J Asian Ceram. Soc. 2(4), 416–421 (2014)

    Article  Google Scholar 

  49. H. Dhaouadi, O. Ghodbane, F. Hosni, F. Touati, ISRN Spectroscopy, Article 706398 (2012). https://doi.org/10.5402/2012/706398

  50. P.S. Vindhya, T. Jeyasingh, V.T. Kavitha, in AIP Conference Proceedings (Vol. 2082, No. 1, p. 080005). AIP Publishing (2019).

  51. S. Das, N.P. Lalla, G.S. Okram, Indian J. Pure Ap. Phy. 52, 386–390 (2014)

    Google Scholar 

  52. K.L. Routray, B. Sahoo, D. Behera, Mater. Res. Express 5(8), 085016 (2018)

    Article  ADS  Google Scholar 

  53. N.B. Velhal, N.D. Patil, A.R. Shelke, N.G. Deshpande, V.R. Puri, AIP Adv. 5, 097166 (2015). https://doi.org/10.1063/1.4931908

    Article  ADS  Google Scholar 

  54. D.S. Kumar, K.C.B. Naidu, M.M. Rafi, K.P. Nazeer, A.A. Begam, G.R. Kumar, Materials Science-Poland. 36(1), 123–133 (2018)

    Article  ADS  Google Scholar 

  55. C.H. Ho, C.D. Liu, C.H. Hiesh, K.H. Hiesh, S.N. Lee, Synth Met 158, 630–637 (2008)

    Article  Google Scholar 

  56. D. Damodaran, R.M. Balakrishnan, V.K. Shetty, Biomed, Res. Int. Article 149120 (2013). https://dx.doi.org/10.1155/2013/149120

  57. S.S. Gill, N. Tuteja, Plant Signal Behav. 6(2), 215–222 (2011)

    Article  Google Scholar 

  58. K. Vahabi, G.A. Mansoori, S. Karimi, Insciences J. 1(1), 65–79 (2011)

    Article  Google Scholar 

  59. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry 28, 313–358 (2003)

    Google Scholar 

  60. K.S.H. Naveen, K.V.B. Rao, G. Kumar, K.G. Narasimha, Biotechnol. 5(4), 237–241 (2011)

    Google Scholar 

  61. K. Kalishwaralal, R.S. Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Colloids Surf. B Biointerfaces 65, 150–153 (2008)

    Article  Google Scholar 

  62. S.A. Kumar, M.K. Abyaneh, S.W. Gosavi, S.K. Kulkarni, R. Pasricha, A. Ahmad, M.I. Khan, Biotechnol. Lett. 29, 435–445 (2007)

    Google Scholar 

  63. A. Ingle, A. Gade, S. Pierrat, C. Sönnichsen, M. Rai. Curr. Nanosci. 4, 141–144 (2008)

    Article  ADS  Google Scholar 

  64. R.K. Mehra, D.R. Winge, J. Cell Biochem. 45, 30–40 (1991)

    Article  Google Scholar 

  65. A.K. Jha, K. Prasad, Nanotechnol. Dev. 2(e9), 46–51 (2012)

    Google Scholar 

  66. E. Carpenè, G. Andreani, G. Isani, J. Trace Elem. Med. Biol. 21(S1), 35–39 (2007)

    Article  Google Scholar 

  67. D. Chang, M. Lim, J.A. Goos, R. Qiao, Y.Y. Ng, F.M. Mansfeld, M. Jackson, T. Davis, M. Kavallaris, Front. Pharmacol. 9, 831 (2018)

    Article  Google Scholar 

  68. AT Khalil M Ovais I Ullah M Ali ZK Shinwari M Maaza 2020 Arab. J. Chem. 13 1 606 619 (2020).

  69. E. Papis, F. Rossi, M. Raspanti, I. Dalle-Donne, G. Colombo, A. Milzani, G. Bernardini, R. Gornati, Toxicol. Lett. 189(3), 253–259 (2009)

    Article  Google Scholar 

  70. S. Khan, A.A. Ansari, A.A. Khan, R. Ahmad, O. Al-Obaid, W. Al-Kattan, In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. J. Biol. Inorg. Chem. 20(8), 1319–1326 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Department of Chemical Engineering, Department of Electrical and Electronics Engineering and Department of Physics, National Institute of Technology Karnataka, Surathkal, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Mohan Balakrishnan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayanandan, A.S., Balakrishnan, R.M. Photostability and electrical and magnetic properties of cobalt oxide nanoparticles through biological mechanism of endophytic fungus Aspergillus nidulans. Appl. Phys. A 126, 234 (2020). https://doi.org/10.1007/s00339-020-3395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3395-x

Keywords

Navigation