Skip to main content
Log in

Synthesis and characterization of the chemically deposited SnS1−x Sex thin films: structural, linear and nonlinear optical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This article reported the synthesis of tin sulfide selenide (SnS1−x Sex) thin films with different compositions (0 ≤ x ≤ 1) using a cost-effective chemical bath deposition technique. The structural properties of the chemically synthesized SnS1−x Sex thin films were analyzed by means of the X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM). The XRD results demonstrate that all the chemically synthesized SnS1−x Sex thin films are polycrystalline and displayed an orthorhombic phase corresponding to the different compositions. The compositional elements of the SnS1−x Sex thin films were investigated via an energy dispersive X-ray analysis (EDAX). The optical study on the SnS1−x Sex thin films displayed that the chemically deposited SnS1−x Sex films exhibited a direct allowed optical transition and by increasing the Se content the magnitudes of the direct bandgap were decreased from 1.41–1.23 eV while the Urbach energy was increased. The effect of composition on the skin depth δ, absorption coefficient α, linear refractive index n and the static refractive index no of the SnS1−x Sex thin films was studied. Additionally, the results displayed that there is an improvement in the magnitudes of the nonlinear refractive index n2, optical conductivity, third-order nonlinear optical susceptibility \(\chi^{\left( 3 \right)}\) and the electrical conductivity of the SnS1−x Sex thin films occurred by increasing the selenium content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Delice, M. Isik, H.H. Gullu, M. Terlemezoglu, O.B. Surucu, M. Parlak, N.M. Gasanly, J. Phys. Chem. Solids 131, 22 (2019)

    Article  ADS  Google Scholar 

  2. N. Koteeswara Reddy, M. Devika, E.S.R. Gopal, Crit. Rev. Solid State Mater. Sci. 40, 359 (2015)

    Article  ADS  Google Scholar 

  3. D. Shikha, J.K. Sharma, J. Sharma, J. Optoelectron. Adv. Mater. 18, 130 (2016)

    Google Scholar 

  4. D. Shikha, V. Mehta, J. Sharma, R.P. Chauhan, J. Mater. Sci. Mater. Electron. 28, 2487 (2017)

    Article  Google Scholar 

  5. V.K. Arepalli, Y. Shin, J. Kim, Opt. Mater. (Amst). 88, 594 (2019)

    Article  ADS  Google Scholar 

  6. V. Robles, J.F. Trigo, C. Guillén, J. Herrero, Thin Solid Films 582, 249 (2015)

    Article  ADS  Google Scholar 

  7. F. Gode, E. Guneri, O. Baglayan, Appl. Surf. Sci. 318, 227 (2014)

    Article  ADS  Google Scholar 

  8. V.R.M. Reddy, S. Gedi, B. Pejjai, C. Park, J. Mater. Sci. Mater. Electron. 27, 5491 (2016)

    Article  Google Scholar 

  9. N.R. Mathews, Sol. Energy 86, 1010 (2012)

    Article  ADS  Google Scholar 

  10. Z. Hu, Q. Liu, S. Chou, S. Dou, Adv. Mater. 29, 1700606 (2017)

    Article  Google Scholar 

  11. S. Fridjine, K.B. Ben Mahmoud, M. Amlouk, M. Bouhafs, J. Alloys Compd. 479, 457 (2009)

    Article  Google Scholar 

  12. A.A. Yadav, M.A. Barote, P.M. Dongre, E.U. Masumdar, J. Alloys Compd. 493, 179 (2010)

    Article  Google Scholar 

  13. J.B. Chaudhari, N.G. Deshpande, Y.G. Gudage, A. Ghosh, V.B. Huse, R. Sharma, Appl. Surf. Sci. 254, 6810 (2008)

    Article  ADS  Google Scholar 

  14. P.K. Nair, M.T.S. Nair, V.M. Garcıa, O.L. Arenas, Y. Pena, A. Castillo, I.T. Ayala, O. Gomezdaza, A. Sanchez, J. Campos, Sol. Energy Mater. Sol. Cells 52, 313 (1998)

    Article  Google Scholar 

  15. R. Mariappan, V. Ponnuswamy, M. Ragavendar, Optik (Stuttg). 123, 1196 (2012)

    Article  ADS  Google Scholar 

  16. H.K. Sadekar, A.V. Ghule, R. Sharma, J. Alloys Compd. 509, 5525 (2011)

    Article  Google Scholar 

  17. B.A. Mansour, I. Zawawi, H.E. Elsayed-Ali, T.A. Hameed, J. Alloys Compd. 740, 1125 (2018)

    Article  Google Scholar 

  18. H.A.M. Ali, M.M. El-Nahass, E.F.M. El-Zaidia, Opt. Laser Technol. 107, 402 (2018)

    Article  ADS  Google Scholar 

  19. A. El-Denglawey, M.M. Makhlouf, M. Dongol, Results Phys. 10, 714 (2018)

    Article  ADS  Google Scholar 

  20. M. Mohamed, E.R. Shaaban, M.N. Abd-elSalam, A.Y. Abdel-Latief, S.A. Mahmoud, M.A. Abdel-Rahim, Optik (Stuttg) 178, 1302 (2019)

    Article  ADS  Google Scholar 

  21. S. Fouad, I. El Radaf, P. Sharma, M. El-Bana, J. Alloys Compd. 757, 124–133 (2018)

    Article  Google Scholar 

  22. A.S. Hassanien, I. Sharma, J. Alloys Compd. 798, 750 (2019)

    Article  Google Scholar 

  23. M.S. AlKhalifah, I.M. El Radaf, M.S. El-Bana, J. Alloys Compd. 813, 152169 (2020)

    Article  Google Scholar 

  24. T.A. Hameed, I.M.E. Radaf, G.B. Sakr, Appl. Phys. A. Mater. Sci. Process. 124, 684 (2018)

    Article  ADS  Google Scholar 

  25. A.M. Al-Baradi, M.M. El-Nahass, A.M. Hassanien, A.A. Atta, M.S. Alqahtani, A.O. Aldawsari, Optik (Stuttg). 168, 853 (2018)

    Article  ADS  Google Scholar 

  26. A. Khan, M. Shkir, M.A. Manthrammel, V. Ganesh, I.S. Yahia, M. Ahmed, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, S. AlFaify, Ceram. Int. 45, 10133 (2019)

    Article  Google Scholar 

  27. A.S. Hassanien, J. Alloys Compd. 671, 566 (2016)

    Article  Google Scholar 

  28. E.R. Shaaban, N. Afify, A. El-Taher, J. Alloys Compd. 482, 400 (2009)

    Article  Google Scholar 

  29. A.S.M. Ahmad, R. Shakil, K. Uzma, A. Zahid, A. Afzal, K.A. Mahmood, Appl. Phys. A 125, 713 (2019)

    Article  ADS  Google Scholar 

  30. S.H. Wemple, Phys. Rev. B 7, 3767 (1973)

    Article  ADS  Google Scholar 

  31. S.H. Wemple, M. DiDomenico Jr., Phys. Rev. B 3, 1338 (1971)

    Article  ADS  Google Scholar 

  32. A.A.A. Darwish, M. Rashad, A.E. Bekheet, M.M. El-Nahass, J. Alloys Compd. 709, 640 (2017)

    Article  Google Scholar 

  33. A. Ziti, B. Hartiti, H. Labrim, S. Fadili, H. J. Tchognia Nkuissi, A. Ridah, M. Tahri, P. Thevenin, Appl. Phys. A Mater. Sci. Process. 125, 218 (2019)

  34. I. M. El Radaf, T. A. Hameed, G. M. El komy, T. M. Dahy, Ceram. Int. 45, 3072 (2019)

  35. H. Kong, X. Li, L. Xuan, T. Zhang, Z. Wang, S. Zhang, Y. Hou, Appl. Phys. A. Mater. Sci. Process. 125, 21 (2019)

    Article  Google Scholar 

  36. Z.N. Kayani, S. Arshad, S. Riaz, S. Naseem, Appl. Phys. A. Mater. Sci. Process. 125, 196 (2019)

    Article  ADS  Google Scholar 

  37. A.S. Awed, N.A. El-Ghamaz, M.M. El-Nahass, H.M. Zeyada, Indian J. Phys. 93, 861 (2019)

    Article  ADS  Google Scholar 

  38. M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, J. Alloys Compd. 705, 333 (2017)

    Article  Google Scholar 

  39. A.S. Hassanien, A.A. Akl, Phys. B Phys. Condens. Matter 576, 411718 (2019)

    Article  Google Scholar 

  40. R.M. Abdelhameed, I.M. El Radaf, Mater. Res. Express 5, 66402 (2018)

    Article  Google Scholar 

  41. S.I. Qashou, M. Rashad, A.Z. Mahmoud, A.A.A. Darwish, Vacuum 162, 199 (2019)

    Article  ADS  Google Scholar 

  42. M. Shkir, A. Khan, A.M. El-Toni, A. Aldalbahi, I.S. Yahia, S. AlFaify, J. Phys. Chem. Solids 130, 189 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed R. Wassel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wassel, A.R., El Radaf, I.M. Synthesis and characterization of the chemically deposited SnS1−x Sex thin films: structural, linear and nonlinear optical properties. Appl. Phys. A 126, 177 (2020). https://doi.org/10.1007/s00339-020-3353-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3353-7

Keywords

Navigation