Skip to main content
Log in

Optoelectronic property correlation with structure and valence band spectra for Fe-doped Zn2SnO4-nanostructured films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A high Figure of merit (FOM) is expected to justify the role of any TCO material as Transparent conducting electrode in the state-of-the-art devices. Here, we are reporting the superior value of Haacke’s FOM of the order of 0.4 × 10−3 Ω−1 for Fe-doped ZTO nanostructured films. Optical properties reveal higher optical transparency of 86% (x = 0.08) along with band gap curtailing by about 0.3 eV for Fe-doped samples. Electrical measurements give high carrier concentration (1020 cm−3) and low resistivity (10−3 Ω cm) along with improved mobility that demonstrate electron-cloaking effect at highest dopant concentrations. A significant broadening of the T2g Raman characteristic mode indicates increased degeneracy along with phonon confinement effect. The valence band spectra reveal an upshift in VBM and CBM with Valence band offset value varying from 3.08 to 1.98 eV. Time domain terahertz measurements reveal an appreciable decrease in absorption coefficient (4000 cm−1 to 5 cm−1 at 0.7 THz) and the refractive index dispersion change to nearly constant value of 1.8 between 0.8 and 2.5 THz with Fe doping in ZTO films. These results are very important for the development of transparent electronics and active materials for the components for manipulating THz spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data are available as supplementary material with this manuscript. The data will be made available on reasonable request.

References

  1. R. Xu, L. Min, Z. Qi, X. Zhang, J. Jian, Y. Ji, F. Qian, J. Fan, C. Kan, H. Wang, W. Tian, L. Li, W. Li, H. Yang, Perovskite transparent conducting oxide for the design of a transparent, flexible, and self- powered perovskite photodetector. ACS Appl. Mater. Interfaces. 12, 16462–16468 (2020)

    Article  CAS  Google Scholar 

  2. M.B. Ali, R. Nasser, S.M. Alshahrani, H.A.S. Al-Shamirid, B. Elgammal, H. Elhouichet, Synthesis, characterization, and visible- light photocatalytic activity of transition metals doped ZTO nanoparticles. Ceram. Int. 47(23), 32882–32890 (2021)

    Article  Google Scholar 

  3. J.F. Li, S.H. Su, K.S. Hwang, M. Yokoyama, Effect of laser-etched indium tin oxide on optoelectrical properties of organic light-emitting diodes. Appl. Surf. Sci. 253, 5415–5418 (2007)

    Article  CAS  Google Scholar 

  4. P. Tiwana, P. Docampo, M.B. Johnston, H.J. Snaith, L.M. Herz, Electron mobility and injection dynamics in mesoporous ZnO, SnO2, and TiO2 films used in dye sensitized solar cells. ACS Nano. 5(6), 5158–5166 (2011)

    Article  CAS  Google Scholar 

  5. H.X. Thanh, K.Q. Trung, K. Van Dam, N. Van Duy, C.M. Hung, N.D. Hoa, N. Van Hieu, On-chip growth of single-phase Zn2SnO4 nanowires by thermal evaporation method for gas sensor application. J. Alloys Compd. 708, 470–475 (2017)

    Article  CAS  Google Scholar 

  6. E. Chanta, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Ruankham, S. Choopun, Effect of ZnO double layer as anti-reflection coating layer in ZnO dye sensitized solar cells. Energy Proc. 79, 879–884 (2015)

    Article  CAS  Google Scholar 

  7. Z. Chen, W. Li, R. Li, Y. Zheng, G. Xu, H. Cheng, Fabrication of highly transparent and conductive indium–tin oxide thin films with a high figure of merit via solution processing. Langmuir. 45, 13836–13842 (2013)

    Article  Google Scholar 

  8. I. Arora, P. Kumar, T.S. Sathiaraj, R. Thangaraj, Structure, optical and electrical properties of sol gel synthesized Zn1.5+xSn1.5-xO4 nanostructured films as transparent conductor. Thin Solid Films. 698, 137871 (2020)

    Article  CAS  Google Scholar 

  9. I. Arora, V. Natarajan, P.K. Sharma, Structural correlations for increased FOM in Pb doped Zn2SnO4 nanostructured films for applications as transparent electrode. J. Alloys Compd. 900, 163531 (2022)

    Article  CAS  Google Scholar 

  10. I. Arora, P. Kumar, Association of structure and modulated optoelectronics property in Sb doped Zn2SnO4 nanostructured films for transparent electrodes. J. Alloys Compd. 845, 156316 (2020)

    Article  CAS  Google Scholar 

  11. I. Arora, P. Kumar, Characterization of oxygen vacancy effect on structure and optoelectronic properties of sol gel deposited Zn2-xCaxSnO4 nanostructured films. Mater. Chem. Phys. 258, 123905 (2021)

    Article  CAS  Google Scholar 

  12. J. Zhou, H. Zhu, Q. Song, Z. Ding, J. Mao, Z. Ren, G. Chen, Mobility enhancement in heavily doped semiconductors via electron cloaking. Nat. Commun. 13, 2582 (2022)

    Google Scholar 

  13. G. Damarla, M. Venkatesh, A.K. Chaudhary, Temperature-dependent terahertz spectroscopy and refractive index measurements of aqua-soluble and plastic explosives. Appl. Opt. 57(29), 8743–8750 (2018)

    Article  CAS  Google Scholar 

  14. D. Ganesh, E. Narsimha Rao, M. Venkatesh, K. Nagarjuna, G. Vaihiswaran, A.K. Chaudhary, A.K. Sahoo, Time-domain terahertz spectroscopy and density functional theory studies of nitro/nitrogen-rich aryl-tetrazole derivatives. ACS Omega. 5(6), 2541–2551 (2020)

    Article  CAS  Google Scholar 

  15. V. Natarajan, P.N. Kumar, M. Ahmad, J.P. Sharma, A.K. Chaudhary, P.K. Sharma, Effect of electron-phonon interaction and valence band edge shift for carrier-type reversal in layered ZnS/rGO nanocomposites. J. Colloid Interface Sci. 586, 39–46 (2021)

    Article  CAS  Google Scholar 

  16. U. Venkataramudu, C. Sahoo, S. Leelashree, M. Venkatesh, D. Ganesh, A.K. Chaudhary, Terahertz radiation and second-harmonic generation from a single-component polar organic ferroelectric crystal. J. Mater. Chem. C 6(35), 9330–9335 (2018)

    Article  CAS  Google Scholar 

  17. W.J. Lee, G. Lee, D.H. Cho, C. Kang, N. Myoung, C.S. Kee, Y.D. Chung, Ultrafast photoexcited-carrier behavior induced by hydrogen ion irradiation of a Cu (InGa)Se2 thin film in the terahertz region. IEEE Trans. Terahertz Sci. Technol. 11(2), 175–182 (2021)

    Article  CAS  Google Scholar 

  18. A.V. Ivanov, A.Y. Tatarenko, A.A. Gorodetsky, O.N. Makarevich, M. Navarro-Cía, A.M. Makarevich, A.R. Kaul, A.A. Eliseev, O.V. Boytsova, Fabrication of epitaxial W-doped VO2 nanostructured films for terahertz modulation using the solvothermal process. ACS Appl. Nano Mater. 4(10), 10592–10600 (2021)

    Article  CAS  Google Scholar 

  19. S. Katba, S. Jethva, M. Udeshi, P. Trivedi, M. Vagadia, D.K. Shukla, R.J. Choudhary, D.M. Phase, D.G. Kuberkar, Doping induced modifications in the electronic structure and magnetism of ZnO films: valence band and conduction band studies. Appl. Surf. Sci. 423, 100–110 (2017)

    Article  CAS  Google Scholar 

  20. C. Han, L. Duan, X. Zhao, Z. Hu, Y. Niu, W. Geng, Effect of Fe doping on structural and optical properties of ZnO films and nanorods. J. Alloys Comp. 770, 854–863 (2019)

    Article  CAS  Google Scholar 

  21. C. Ghorui, A.K. Chaudhary, P.N. Kumar, K. Rajesh, Study of THz time-domain spectroscopy based optical properties and detection of minerals and explosives from soil samples of different origins, 2022 Workshop on Recent Advances in Photonics (WRAP), Mumbai, India, (2022), pp. 1–2

  22. C. Ghorui, A.V. Kidavu, P.N. Kumar, S. Das, A.K. Chaudhary, M. Yu, Andreev, Comparative studies of terahertz-based optical properties in transmission/reflection modes of GaSe: S and measurement of its scattering losses due to surface roughness for efficient terahertz generation. Phys. Scrip. 98, 025508 (2023)

    Article  Google Scholar 

  23. R. Koalla, N. Periketi, C. Ghorui, S. Mangali, A.K. Chaudhary, Terahertz time- domain spectroscopy, imaging and density functional theory based studies of 3, 4, 5 trinitro 1 H pyrazole. J. Mol. Struct. 1265, 133449 (2022)

    Article  CAS  Google Scholar 

  24. V.V. Ganbanle, M.A. Patil, H.P. Deshmukh, K.Y. Rajpure, Development of ZnSnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature. J. Anal. Appl. Pyrol. 107, 233–241 (2014)

    Article  Google Scholar 

  25. Y. Jiang, X. Chen, R. Sun, Z. Xiong, L. Zheng, Hydrothermal synthesis and gas sensing properties of cubic and quasi cubic ZnSnO4. Mater. Chem. Phys. 129, 53–61 (2011)

    Article  CAS  Google Scholar 

  26. S. Dinesh, N. Thirugnanam, M. Anandan, S. Barathan, N. Anandhan, Effect of activated carbon on electrochemical and photocatalytic performance of hydrothermally synthesized zinc stannate nanoparticles. J. Mater. Sci. Mater. Electron. 27, 12786–11279 (2016)

    Article  CAS  Google Scholar 

  27. S.D. Baranovskii, A.V. Nenashev, D. Hertel, F. Gebhard, K. Meerholz, Energy scales of compositional disorder in alloy semiconductors. ACS Omega 7(50), 45741–45751 (2022)

    Article  CAS  Google Scholar 

  28. M.I. Farooq, M.S. Khan, M. Yousaf, K. Zhang, B. Zou, Antiferromagnetic magnetic polaron formation and optical properties of CVD grown Mn-doped zinc stannate (ZTO). ACS Appl. Electron. Mater. 2(6), 1679–1688 (2020)

    Article  CAS  Google Scholar 

  29. R.M.V. Nikolic, T. Ivetic, D.L. Young, K.M. Paraskevopoulos, T.T. Zobra, V. Blagojevic, P.M. Nikolic, D.V. Radovic, M.M. Ristic, Far infrared properties of bulk sintered and thin film Zn2SnO4. Mater. Sci. Eng. B 138, 7–11 (2007)

    Article  CAS  Google Scholar 

  30. Z. Wang, P. Lazor, S.K. Saxena, H.S.C. O’Neill, High pressure Raman spectroscopy of ferrite MgFe2O4. Mater. Res. Bull. 37, 1589–1602 (2002)

    Article  CAS  Google Scholar 

  31. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, Structural and optoelectronic properties of antimony incorporated tin oxide thin films. J. Alloys Compd. 505, 416–422 (2010)

    Article  CAS  Google Scholar 

  32. R. Naik, R. Ganesan, K.S. Sangunni, Optical properties change with the addition and diffusion of Bi to As2S3 in the Bi/ As2S3 bilayer thin film. J. Alloys Compd. 554, 293–298 (2013)

    Article  CAS  Google Scholar 

  33. R. Chwang, B.J. Smith, C.R. Crowell, Contact size effects on the Van Der Pauw method for resistivity and hall coefficient measurement. Solid-State Electron. 17, 1217–1227 (1974)

    Article  Google Scholar 

  34. G. Haacke, New figure of merit for transparent conductor. J. Appl. Phys. 47, 4086 (1976)

    Article  CAS  Google Scholar 

  35. R. Naik, P.P. Sahoo, C. Sripan, R. Ganesan, Laser induced Bi diffusion in As40S60 thin films and the optical properties change probed by FTIR and XPS. Opt. Mater. 62, 211–218 (2016)

    Article  CAS  Google Scholar 

  36. J. Su, X. Lu, J. Zhang, H. Sun, C. Zhang et al., The effect of Fe2+ ions on dielectric and magnetic properties of Yb3Fe5O12 ceramics. J. Appl. Phys. 111, 014112 (2012)

    Article  Google Scholar 

  37. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  38. S. Sharma, H. Pandey, M. Kumar, S. Chhoker, Room temperature ferromagnetism and electrical properties of Mn-doped Zn2SnO4 nanorods. Superlattice Microstruct. 120, 161–169 (2018)

    Article  CAS  Google Scholar 

  39. R. Naik, S.K. Parida, C. Kumar, R. Ganesan, K.S. Sangunni, Optical properties change in Sb40S40Se20 thin films by light-induced effect. J. Alloys Compd. 522, 172–177 (2012)

    Article  CAS  Google Scholar 

  40. J. Xu, Y. Teng, F. Teng, Effect of surface defect states on valence band and charge separation and transfer efficiency. Sci. Rep. 6, 32457 (2016)

    Article  CAS  Google Scholar 

  41. H. Singh, S. Kumar, P.K. Sharma, Tunable exciton-plasmon coupled resonances with Cu2+/Cu+ substitutions in self-assembled CuS nanostructured films. Appl. Surf. Sci. 612, 155831 (2023)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge SAIF, Panjab University, Chandigarh for XRD, FESEM, and UV–Vis–NIR spectroscopy; MRC, MNIT, Jaipur for Hall measurements and Raman spectroscopy; and AMRC, IIT Mandi for XPS measurements. IA is grateful to DST (GoI, New Delhi) for proving financial support under Women Scientist Scheme (SR/WOS-A/PM 80/2017). The author AKC and CG extends their gratitude to the Defence Research and Development Organisation (DRDO), India [Grant no. DRDO/18/1801/201/01038] ACRHEM Phase-III. One of the author CG expressed his thanks to the Prime Minister Research Fellowship (PMRF), Government of India for maintainance of fellowship.

Funding

This work was financial supported under Women Scientist Scheme (SR/WOS-A/PM 80/2017) and Defence Research and Development Organisation (DRDO), India (Grant no. DRDO/18/1801/201/01038) ACRHEM Phase-III.

Author information

Authors and Affiliations

Authors

Contributions

IA contributed to conceptualization, methodology, software, and writing and preparation of original draft. CG, VN, and HS contributed to physical characterization and analysis. PKS contributed to conceptualization, resources, supervision, and editing of the manuscript. TSS and AKC contributed to supervision, resources, and editing of the manuscript. All the authors have read and agreed to the present version of the manuscript.

Corresponding authors

Correspondence to Praveen Kumar Sharma or Anil Kumar Chaudhary.

Ethics declarations

Competing interests

The authors declare that they do not have any known competing financial and non-financial interests to disclose that could have appeared to influence the work presented in this research paper.

Research involving human and animal participants

The authors declare that the research presented in this research article does not involve any participation or preliminary trials on humans as well as on animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15007.9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, I., Ghorui, C., Natarajan, V. et al. Optoelectronic property correlation with structure and valence band spectra for Fe-doped Zn2SnO4-nanostructured films. J Mater Sci: Mater Electron 34, 2301 (2023). https://doi.org/10.1007/s10854-023-11736-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11736-5

Navigation