Skip to main content
Log in

Physical and optical properties of NaF–TeO2 glasses and glass–ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Density, electrical conductivity and optical properties of xNaF⋅(100–x)TeO2 (0 ≤ x ≤ 75 mol%) glasses and glass–ceramics have been investigated. Density and molar volume decrease with increasing NaF content. The change of free volume is a primary factor in changing molar volume as well as the conductivity. Na+ ions are assumed as the main charge carriers in these glasses and glass–ceramics. The conductivity was found to have a limited change because of decreasing in free volume and the association between Na and F. Energy gap and Urbach energy decrease with increasing NaF content up to NaF ≤ 40 mol%, while refractive index increases. After that, these quantities remain nearly constant for further additions of NaF. These changes are due to the structural changes that occur with modifying the network by NaF. For NaF ≤ 10 mol%, the entire NaF content enters the structure to convert TeO4 units into TeO3/2F and Na+[TeO3+1] units; whereas, it starts to form its own matrix beside modifying the tellurite network, for NaF > 10 mol%. Molar refractivity and metallization criterion decrease with increasing NaF content. This shows an insulating behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.B.A. Devi, S. Mahamuda, M. Venkateswarlu, K. Swapna, A.S. Rao, G.V. Prakash, Dy3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses for LASER and white LED applications. Opt. Mater. (Amst) 62, 569–577 (2016)

    Article  ADS  Google Scholar 

  2. L. Huang, S. Shen, A. Jha, Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses. J. Non. Cryst. Solids. 345, 349–353 (2004)

    Article  ADS  Google Scholar 

  3. H. Desirena, A. Schülzgen, S. Sabet, G. Ramos-Ortiz, E. la Rosa, N. Peyghambarian, Effect of alkali metal oxides R2O (R= Li, Na, K, Rb and Cs) and network intermediate MO (M= Zn, Mg, Ba and Pb) in tellurite glasses. Opt. Mater. (Amst) 31, 784–789 (2009)

    Article  ADS  Google Scholar 

  4. S.H. Kim, T. Yoko, S. Sakka, Linear and nonlinear optical properties of TeO2 glass. J. Am. Ceram. Soc. 76, 2486–2490 (1993)

    Article  Google Scholar 

  5. R.A.H. El-Mallawany, Tellurite Glasses Handbook: Physical Properties and Data (CRC Press, Boca Raton, 2011).

    MATH  Google Scholar 

  6. A.E. Ersundu, M. Çelikbilek, S. Aydin, A Review of Scanning Electron Microscopy Investigations in Tellurite Glass Systems, Curr. Microsc. Contrib. Adv. Sci. Technol. (A. Méndez-Vilas, Ed.). (2012).

  7. L.M.S. El-Deen, M.S. Al Salhi, M.M. Elkholy, IR and UV spectral studies for rare earths-doped tellurite glasses. J. Alloys Compd. 465, 333–339 (2008)

    Article  Google Scholar 

  8. S. Neov, I. Gerasimova, V. Kozhukharov, M. Marinov, The structure of glasses in the TeO2–P2O5 system. J. Mater. Sci. 15, 1153–1166 (1980)

    Article  ADS  Google Scholar 

  9. J.M. Rojo, P. Herrero, J. Sanz, B. Tanguy, J. Portier, J.M. Reau, Relationship between microstructure and ionic conduction properties in oxyfluoride tellurite glass-ceramics. J. Non. Cryst. Solids. 146, 50–56 (1992)

    Article  ADS  Google Scholar 

  10. P. Balaya, C.S. Sunandana, Crystallization studies of 30Li2O:70TeO2 glass. J. Non. Cryst. Solids. 162, 253–262 (1993)

    Article  ADS  Google Scholar 

  11. J.M. Rojo, J. Sanz, J.M. Reau, B. Tanguy, Influence of ion distribution on the ionic conductivity of lithium tellurite glasses (Li2O–TeO2 and LiF–TeO2). J. Non. Cryst. Solids. 116, 167–174 (1990)

    Article  ADS  Google Scholar 

  12. W. Vogel, H. Burger, G. Zerge, B. Muller, K. Forkel, G. Winterstein, A. Boxberger, H. Romhild, Halogenid-und sulfathaltige telluritglaser. Silikattechnelk 25, 207 (1974)

    Google Scholar 

  13. N. Elkhoshkhany, S.Y. Marzouk, S. Shahin, Synthesis and optical properties of new fluoro-tellurite glass within (TeO2–ZnO–LiF–Nb2O5–NaF) system. J. Non. Cryst. Solids. 472, 39–45 (2017)

    Article  ADS  Google Scholar 

  14. E.F. El Agammy, H. Doweidar, K. El-Egili, R. Ramadan, M. Jaremko, A.H. Emwas, Structure of NaF–TeO2 glasses and glass-ceramics. Ceram. Int. 46, 18551–18561 (2020)

    Article  Google Scholar 

  15. E.F. El Agammy, H. Doweidar, K. El-Egili, R. Ramadan, Structure of PbF2–TeO2 glasses and glass-ceramics. J. Mater. Res. Technol. 9, 4016–4024 (2020)

    Article  Google Scholar 

  16. H. Doweidar, Density of CaO–Al2O3–SiO2 glasses with (CaO/Al2O3)≥ 1; the hidden factors. J. Non. Cryst. Solids. 471, 344–348 (2017)

    Article  ADS  Google Scholar 

  17. H. Doweidar, K. El-Egili, A. Altawaf, Structural units and properties of BaF2–PbF2–B2O3 glasses. J. Non. Cryst. Solids. 464, 73–80 (2017)

    Article  ADS  Google Scholar 

  18. K. El-Egili, H. Doweidar, R. Ramadan, A. Altawaf, Role of F ions in the structure and properties of BaF2–B2O3 glasses. J. Non. Cryst. Solids. 449, 83–93 (2016)

    Article  ADS  Google Scholar 

  19. H. Doweidar, G. El-Damrawi, E.F. El Agammy, Structural correlations in BaO–PbO–B2O3 glasses as inferred from FTIR spectra. Vib. Spectrosc. 73, 90–96 (2014)

    Article  Google Scholar 

  20. H. Doweidar, G. El-Damrawi, E.F. El Agammy, FTIR investigation and mixed cation effect of Li2O–BaO–B2O3 glasses. Mater. Chem. Phys. 207, 259–270 (2018)

    Article  Google Scholar 

  21. H. Doweidar, Density and molar volume of Li2O–SiO2 glasses in relation to their microstructure. Phys. Chem. Glas. 39, 286–289 (1998)

    Google Scholar 

  22. C. Kittel, P. McEuen, P. McEuen, Introduction to Solid State Physics (Wiley, New York, 1996).

    Google Scholar 

  23. P. Wesołowski, W. Jakubowski, J.L. Nowiński, Electrical properties of superionic silver-borate glasses doped with AgI. Phys. Status Solidi. 115, 81–86 (1989)

    Article  ADS  Google Scholar 

  24. H.A.A. Sidek, S. Rosmawati, Z.A. Talib, M.K. Halimah, W.M. Daud, Synthesis and optical properties of ZnO–TeO2 glass system. Am. J. Appl. Sci. 6, 1489 (2009)

    Article  Google Scholar 

  25. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970)

    Article  ADS  Google Scholar 

  26. W.S. AbuShanab, E.B. Moustafa, A.H. Hammad, R.M. Ramadan, A.R. Wassel, Enhancement the structural, optical and nonlinear optical properties of cadmium phosphate glasses by nickel ions. J. Mater. Sci. Mater. Electron. 30, 18058–18064 (2019)

    Article  Google Scholar 

  27. M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, Different property studies with network improvement of CdO doped alkali borate glass. J. Non. Cryst. Solids. 491, 14–23 (2018)

    Article  ADS  Google Scholar 

  28. S.Y. Marzouk, R. Seoudi, D.A. Said, M.S. Mabrouk, Linear and non-linear optics and FTIR characteristics of borosilicate glasses doped with gadolinium ions. Opt. Mater. (Amst) 35, 2077–2084 (2013)

    Article  ADS  Google Scholar 

  29. M.R. Sahar, N. Noordin, Oxychloride glasses based on the TeO2–ZnO–ZnCl2 system. J. Non. Cryst. Solids. 184, 137–140 (1995)

    Article  ADS  Google Scholar 

  30. E.A. Davis, N.F. Mott, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1971).

    Google Scholar 

  31. W. Stambouli, H. Elhouichet, M. Ferid, Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. J. Mol. Struct. 1028, 39–43 (2012)

    Article  ADS  Google Scholar 

  32. M.S. Malik, C.A. Hogarth, The effect of chloride ions on the optical properties of TeO2–CuO–CuCl2 glasses. J. Mater. Sci. 25, 116–120 (1990)

    Article  ADS  Google Scholar 

  33. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 1736–1740 (1996)

    Article  ADS  Google Scholar 

  34. I. Jlassi, H. Elhouichet, M. Ferid, Thermal and optical properties of tellurite glasses doped erbium. J. Mater. Sci. 46, 806–812 (2011)

    Article  ADS  Google Scholar 

  35. S.L.S. Rao, G. Ramadevudu, M. Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Optical properties of alkaline earth borate glasses. Int. J. Eng. Sci. Technol. 4, 25–35 (2012)

    Google Scholar 

  36. F. Nawaz, M.R. Sahar, S.K. Ghoshal, A. Awang, I. Ahmed, Concentration dependent structural and spectroscopic properties of Sm3+/Yb3+ co-doped sodium tellurite glass. Phys. B Condens. Matter. 433, 89–95 (2014)

    Article  ADS  Google Scholar 

  37. M. Abdel-Baki, F. El-Diasty, F.A.A. Wahab, Optical characterization of xTiO2−(60–x) SiO2–40Na2O glasses: II. Absorption edge, Fermi level, electronic polarizability and optical basicity. Opt. Commun. 261, 65–70 (2006)

    Article  ADS  Google Scholar 

  38. S. Sherman, S. Wagner, R.A. Gottscho, Correlation between the valence-and conduction-band-tail energies in hydrogenated amorphous silicon. Appl. Phys. Lett. 69, 3242–3244 (1996)

    Article  ADS  Google Scholar 

  39. S. Kasap, P. Capper, Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2017).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. F. El Agammy or H. Doweidar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Agammy, E.F., Doweidar, H., El-Egili, K. et al. Physical and optical properties of NaF–TeO2 glasses and glass–ceramics. Appl. Phys. A 127, 42 (2021). https://doi.org/10.1007/s00339-020-04153-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04153-6

Keywords

Navigation