Skip to main content
Log in

LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electron energy spectrum of a core/shell spherical quantum dot made of zincblende GaN/InN compounds is investigated taking into account the presence of an off-center donor atom and the influence of band nonparabolicity. The interaction of both the charge carrier and the Coulombic core with longitudinal optical phonons is included through Frö hlich and Aldrich-Bajaj theories, respectively. The ground state energy is determined by solving the resulting conduction band effective mass equation via the variational Ritz principle. A detailed analysis of the features of electron and hole spectra as functions of the core and shell sizes is presented, highlighting the possibility of transitioning between type-I and type-II structures. A detailed discussion about the effects of conduction band nonparabolicity, dielectric mismatch and electron-phonon interaction onto the impurity binding energy is provided. It was found that, in general, nonparabolicity of the conduction band leads to larger impurity binding energy, and that LO-phonon and dielectric mismatch effects tend to reduce the value of the latter quantity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. Mélinon, S. Begin-Colin, J.L. Duvail, F. Gauffre, N.H. Boime, G. Ledoux, J. Plain, P. Reiss, F. Silly, B. Warot-Fonrose, Phys. Rep. 543, 163 (2014)

    Article  Google Scholar 

  2. A.R. Kortan, R. Hull, R.L. Opila, M.G. Bawendi, M.L. Steigerwald, P.J. Carroll, L. Brus, J. Am. Chem. Soc. 112, 1327 (1990)

    Article  Google Scholar 

  3. H.S. Zhou, I. Honma, H. Komiyama, J. Phys. Chem. 97, 895 (1993)

    Article  Google Scholar 

  4. A. Mews, A. Eychmuller, M. Giersig, D. Schooss, H. Weller, J. Phys. Chem. 98, 934 (1994)

    Article  Google Scholar 

  5. J.W. Haus, H.S. Zhou, I. Honma, H. Komiyana, Phys. Rev. B 47, 1359 (1993)

    Article  ADS  Google Scholar 

  6. H. Zhao, L. Jin, Y. Zhou, A. Bandar, Z. Fan, A.O. Govorov, Z. Mi, S. Sun, F. Rosei, A. Vomiero, Nanotechnology 27, 495405 (2016)

    Article  Google Scholar 

  7. W. Ji, P. Jing, W. Xu, X. Yuan, Y. Wang, J. Zhao, A.K.-Y. Jen, Appl. Phys. Lett. 103, 053106 (2013)

    Article  ADS  Google Scholar 

  8. T.-R. Kuo, S.-T. Hung, Y.-T. Lin, T.-L. Chou, M.-C. Kuo, Y.-P. Kuo, C.-C. Chen, Nanoscale Res. Lett. 12, 537 (2017)

    Article  ADS  Google Scholar 

  9. S. Kim, B. Fisher, H.-J. Eisler, M. Bawendi, J. Am. Chem. Soc. 125, 11466 (2003)

    Article  Google Scholar 

  10. J.J. Li, J.M. Tsay, X. Michalet, S. Weiss, Chem. Phys. 318, 82 (2005)

    Article  Google Scholar 

  11. R. Xie, U. Kolb, J. Li, T. Basché, A. Mews, J. Am. Chem. Soc. 127, 7480 (2005)

    Article  Google Scholar 

  12. V. Kamat Prashant, J. Phys. Chem. C 112, 18737 (2008)

  13. M. Bar, S. Lehmann, M. Rusu, A. Grimm, I. Kotschau, I. Lauermann, P. Pistor, S. Sokoll, T. Schedel-Niedrig, M.C. Lux-Steiner, C.-H. Fischerb, L. Weinhardt, C. Heske, Ch. Jung, Appl. Phys. Lett. 86, 222107 (2005)

    Article  ADS  Google Scholar 

  14. Z. Lu, Ch. Gao, Q. Zhang, M. Chi, J.Y. Howe, Y. Yin, Nano Lett. 11, 3404 (2011)

    Article  ADS  Google Scholar 

  15. L.C.L. Hollenberg, A.S. Dzurak, C. Wellard, A.R. Hamilton, D.J. Reilly, G.J. Milburn, R.G. Clark, Phys. Rev. B 69, 113301 (2004)

    Article  ADS  Google Scholar 

  16. X. Gao, Y. Cui, R.M. Levenson, L.W.K. Chung, S. Nie, Nat. Biotechnol. 22, 969 (2004)

    Article  Google Scholar 

  17. L. Igor, L. Medintz, A.R. Clapp, H. Mattoussi, E.R. Goldman, B. Fisher, J.M. Mauro, Nat. Mater. 2, 630 (2003)

    Article  ADS  Google Scholar 

  18. D. Vasudevan, R. Ranganathan, A. Trinchi, I. Cole, J. Alloy. Compd. 636, 395 (2015)

    Article  Google Scholar 

  19. J.Q. Grim, L. Manna, I. Moreels, Chem. Soc. Rev. 44, 5897 (2015)

    Article  Google Scholar 

  20. A.L. Rogach (ed.), Semiconductor Nanocrystal Quantum Dots (Springer, Wien, 2008)

    Google Scholar 

  21. B.O. Dabbousi, J. Rodriguez-Viejo, F.V. Mikulec, J.R. Heine, H. Mattoussi, R. Ober, K.F. Jensen, M.G. Bawendi, J. Phys. Chem. B 101, 9463 (1997)

    Article  Google Scholar 

  22. M.A. Hines, P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996)

    Article  Google Scholar 

  23. M. Kria, M. El-Yadri, N. Aghoutane, L.M. Pérez, D. Laroze, E. Feddi, Chin. J. Phys. 66, 444 (2020)

    Article  Google Scholar 

  24. H. Bekhouche, A. Gueddim, N. Bouarissa, N. Messikine, Chin. J. Phys. 65, 146 (2020)

    Article  Google Scholar 

  25. R. Khordad, B. Vaseghi, Chin. J. Phys. 59, 473 (2019)

    Article  Google Scholar 

  26. M.G. Barseghyan, A. Manaselyan, A.A. Kirakosyan, L.M. Pérez, David Laroze. Phys. E 117, 113807 (2020)

    Article  Google Scholar 

  27. J. Jasieniak, M. Califano, S.E. Watkins, ACS Nano 5, 5888 (2011)

    Article  Google Scholar 

  28. O. Chen, Y. Yang, T. Wang, H. Wu, C. Niu, J. Yang, Y.C. Cao, J. Am. Chem. Soc. 133, 17504 (2011)

    Article  Google Scholar 

  29. A. Baranov, Y. Rakovich, J. Donegan, T. Perova, R. Moore, D. Talapin, A. Rogach, Y. Masumoto, I. Nabiev, Phys. Rev. B 68, 1653061 (2003)

    Google Scholar 

  30. N. Gaponik, S.G. Hickey, D. Dorfs, A.L. Rogach, A. Eychmüller, Small 6, 1364 (2010)

    Article  Google Scholar 

  31. P.M. Koenraad, M.E. Flatté, Nat. Mater. 10, 91 (2011)

    Article  ADS  Google Scholar 

  32. M. Cristea, E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012)

    Article  ADS  Google Scholar 

  33. M. Cristea, E.C. Niculescu, Phys. Lett. A 377, 1221 (2013)

    Article  ADS  Google Scholar 

  34. E.C. Niculescu, M. Cristea, J. Lumin. 135, 120 (2013)

    Article  Google Scholar 

  35. Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)

    Article  ADS  Google Scholar 

  36. A.K. Manaselyan, A.A. Kirakosyan, Phys. E 22, 825 (2004)

    Article  Google Scholar 

  37. A.K. Manaselyan, M.M. Agasyan, A.A. Kirakosyan, Phys. E 14, 366 (2002)

    Article  Google Scholar 

  38. A. Talbi, E. Feddi, A. Oukerroum, E. Assaid, F. Dujardin, M. Addou, Superlatt. Microstruct. 85, 581 (2015)

    Article  ADS  Google Scholar 

  39. A. Talbi, E. Feddi, A. Zouitine, M. El Haouari, M. Zazoui, A. Oukerroum, F. Dujardin, E. Assaid, M. Addou, Phys. E 84, 303 (2016)

    Article  Google Scholar 

  40. A. Ibral, A. Zouitine, E. Assaid, E. Feddi, F. Dujardin, Phys. B 449, 261 (2014)

    Article  ADS  Google Scholar 

  41. A. Ibral, A. Zouitine, E. Assaid, H. El Achouby, E. Feddi, F. Dujardin, Phys. B 458, 73 (2015)

    Article  ADS  Google Scholar 

  42. A. Zouitine, A. Ibral, E. Assaid, F. Dujardin, E. Feddi, Superlatt. Microstruct. 109, 123 (2017)

    Article  ADS  Google Scholar 

  43. M. El-Yadri, N. Aghoutane, A. El Aouami, E. Feddi, F. Dujardin, C.A. Duque, Appl. Surf. Sci. 441, 204 (2018)

    Article  ADS  Google Scholar 

  44. S. M’zerd, M. El Haouari, A. Talbi, E. Feddi, M.E. Mora-Ramos, J. Alloy Compounds, 753, 68 (2018)

  45. M.A. Stroscio, M. Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  46. C. Trallero-Giner, R. Pérez-Alvarez, F. García-Moliner, Long Wave Polar Modes in Semiconductor Heterostructures (Elsevier, Oxford, 1998)

    Google Scholar 

  47. B.K. Ridley, Electrons and Phonons in Semiconductor Multilayers, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  48. M. El Haouari, M.E. Mora-Ramos, A. Talbi, E. Feddi, F. Dujardin, Phys. E 103, 188 (2018)

    Article  Google Scholar 

  49. P.G. Bolcatto, C.R. Proetto, Phys. Rev. B 59, 12487 (1999)

    Article  ADS  Google Scholar 

  50. V. I. Boichuk, I. V. Bilynsky, I. O. Shakleina and I. P. Kogoutiouk, J. Phys.:Conf. Ser. 289 (2011) 012004

  51. A.L. Vartanian, A.L. Asatryan, L.A. Vardanyan, Superlatt. Microstruct. 103, 205 (2017)

    Article  ADS  Google Scholar 

  52. N. Sil, N. Daripa, A. Kapoor, S.K. Dey, Pramana-J. Phys. 90, 7 (2018)

    Article  ADS  Google Scholar 

  53. E.C. Niculescu, M. Cristea, U.P.B. Sci, Bull. Ser. A 75, 195 (2013)

    Google Scholar 

  54. M. Cristea, A. Radu, E.C. Niculescu, J. Lumin. 143, 592 (2013)

    Article  Google Scholar 

  55. A.L. Vartanian, A.L. Asatryan, L.A. Vardanyan, Superlatt. Microstruct. 113, 442 (2018)

    Article  ADS  Google Scholar 

  56. S. Hong, J. Singh, J. Appl. Phys. 61, 5346 (1987)

    Article  ADS  Google Scholar 

  57. M. Cristea, E.C. Niculescu, Eur. Phys. J. B 85, 191 (2012)

    Article  ADS  Google Scholar 

  58. H. Frohlich, Proc. R. Soc. Edinburgh Sect. A: Math. 215, 291 (1952)

  59. C. Aldrich, K.K. Bajaj, Solid State Commun. 22, 157 (1977)

    Article  ADS  Google Scholar 

  60. K. K. Bajaj, in Polarons in Ionic Crystals and Polar Semiconductors, edited by J. Devreese, 194-225 (North-Holland, Amsterdam, 1972)

  61. S. Shokhovets, O. Ambacher, G. Gobsch, Phys. Rev. B 76, 125203 (2007)

    Article  ADS  Google Scholar 

  62. Gh Safarpour, M.A. Izadi, M. Novzari, E. Niknam, M.M. Golshan, Commun. Theor. Phys. 61, 765 (2014)

    Article  Google Scholar 

  63. A. Radosavijevic, J. Radovanovic, V. Milanović, D. Indjin, Opt. Quant. Electron. 47, 865 (2015)

    Article  Google Scholar 

  64. P.G. Moses, C.G. Van de Walle, Appl. Phys. Lett. 96, 021908 (2010)

    Article  ADS  Google Scholar 

  65. I. Vurgaftman, J.R. Meyer, J. Appl. Phys. 94, 3675 (2003)

    Article  ADS  Google Scholar 

  66. M.K. Bose, K. Midya, C. Bose, J. Appl. Phys. 101, 054315 (2007)

    Article  ADS  Google Scholar 

  67. L.E. Brus, J. Chem. Phys. 80, 4403 (1984)

    Article  ADS  Google Scholar 

  68. J.M. Ferreyra, C.R. Proetto, Phys. Rev. B 57, 9061 (1998)

    Article  ADS  Google Scholar 

  69. C. Delerue, M. Lanoo (Eds.), Nanostructures: Theory and Modeling (Springer, Berlin, 2004)

  70. C.J.F. Băttcher: Theory of Electric Polarization, 2nd ed., V.1 (Elsevier, Amsterdam 1973)

  71. E. Feddi, M. El Haouari, E. Assaid, B. Stèbè, J. El Khamkhami, F. Dujardin, Phys. Rev. B 68, 235313 (2003)

    Article  ADS  Google Scholar 

  72. T.D. Lee, F. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

  73. J. Pollmann, H. Büttner, Phys. Rev. B 16, 4480 (1977)

    Article  ADS  Google Scholar 

  74. A. A. Parvathi and A. John Peter, Acta Physica Polonica A 124 (2013) 706

  75. Y.-F. Wu, X.-X. Liang, K.K. Bajaj, Chin. Phys. 14, 2314 (2005)

    Article  Google Scholar 

  76. P. Rinke, M. Winkelkemper, A. Qteish, D. Bimberg, J. Neugebauer, M. Scheffler, Phys. Rev. B 77, 075202 (2008)

    Article  ADS  Google Scholar 

  77. M. Feneberg, M. Röppischer, C. Cobet, N. Esser, J. Schörmann, T. Schupp, D.J. As, F. Hörich, J. Bläsing, A. Krost, R. Goldhahn, Phys. Rev. B 85, 155207 (2012)

    Article  ADS  Google Scholar 

  78. M.-Y. Xie, M. Schubert, J. Lu, P.O.Å. Persson, V. Stanishev, C.L. Hsiao, L.C. Chen, W.J. Schaff, V. Darakchieva, Phys. Rev. B 90, 195306 (2014)

    Article  ADS  Google Scholar 

  79. R. Cuscó, N. Doménech-Amador, S. Novikov, C.T. Foxom, L. Artús, Phys. Rev. B 92, 075206 (2015)

    Article  ADS  Google Scholar 

  80. L. Banyai, I. Galbraith, C. Ell, H. Haug, Phys. Rev. B 36, 6099 (1987)

    Article  ADS  Google Scholar 

  81. T. Takagahara, Phys. Rev. B 47, 4569 (1993)

    Article  ADS  Google Scholar 

  82. L.E. Brus, IEEE J. Quant. Electron. 22, 1909 (1986)

    Article  ADS  Google Scholar 

  83. H. Haken, Nuovo Cim. 10, 1230 (1956)

    Article  ADS  Google Scholar 

  84. C. Aldrich, K.K. Bajaj, Solid State Commun. 22, 157 (1977)

    Article  ADS  Google Scholar 

  85. E. Haga, Prog. Theor. Phys. Kyoto 13, 555 (1955)

    Article  ADS  Google Scholar 

  86. T.D. Lee, F. Low, D. Pines, Phys. Rev. 90, 297 (1953)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

LMP and DL acknowledge partial financial support from FONDECYT 1180905. DL acknowledges partial financial support from Centers of excellence with BASAL/CONICYT financing, Grant AFB180001, CEDENNA. A. Tiutiunnyk acknowledges the financial support from Postdoctoral Fellowship FONDECYT 3180276. MEMR is thankful to Universidad de Medellín for support and hospitality during 2019-2020 sabbatical stay. He also acknowledges Mexican CONACYT for partial support through Grant A1-S-8218 (CB 2017-2018). AT and KN, acknowledge Moroccan Ministry of Higher Education and Research and CNRST (project: PPR/37/2015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Tiutiunnyk or E. Feddi.

Ethics declarations

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Electrostatic potential created by a source charge placed in spherical nanostructure

This appendix gives the calculation main points of generalized Coulomb potential energy and self-polarization energy in spherical nanostructure/matrix. Those effects are coming from the surface charge densities emergence when two materials touch. The surface charge distributions depend, According to the image charge classical theory, on dielectric constants, sign of source charge and its distance to the interfaces. The very small size of low-dimensional structures reinforce the induced charge effect and make them significant. We note that this analytical calculation is based on calculations performed previously for different geometries [41, 68, 80,81,82].

Let us start by Poisson’s equation describing the electrostatic potential created at \(\overrightarrow{r}\equiv (r,\theta ,\varphi )\):

$$\begin{aligned} \nabla ^2 V\left( \overrightarrow{r}-\overrightarrow{s}\right) =-\frac{4\pi }{ \varepsilon _{in}}\delta \left( \overrightarrow{r}-\overrightarrow{s}\right) \end{aligned}$$
(A1)

In spherical coordinates, the right side of Eq. (A1) becomes:

$$\begin{aligned}&-\frac{4\pi }{\varepsilon _{in}}\delta \left( \overrightarrow{r}- \overrightarrow{s}\right) = \nonumber \\&\qquad -\frac{4\pi }{\varepsilon _{in}}\frac{1}{r^{2}} \delta \left( r-s\right) \delta \left( \cos \left( \theta \right) -\sin \left( \theta ^{\prime }\right) \right) \delta \left( \varphi -\varphi ^{\prime }\right) \nonumber \\&\quad =-\frac{4\pi }{\varepsilon _{in}}\frac{1}{r^{2}}\delta \left( r-s\right) \frac{1}{\sin \left( \theta \right) }\delta \left( \theta -\theta ^{\prime }\right) \delta \left( \varphi -\varphi ^{\prime }\right) \end{aligned}$$
(A2)

Using the spherical harmonics completeness relation, Eq. (A2) writes

$$\begin{aligned}&-\frac{4\pi }{\varepsilon _{in}}\delta \left( \overrightarrow{r}- \overrightarrow{s}\right) \nonumber \\&\quad =-\frac{4\pi }{\varepsilon _{in}}\frac{1}{r^{2}} \delta \left( r-s\right) \sum \limits _{l=0}^{+\infty }\sum \limits _{m=-1}^{+1}Y_{l,m}\left( \theta ,\varphi \right) Y_{l,m}\left( \theta ^{\prime },\varphi ^{\prime }\right) \end{aligned}$$
(A3)

Applying the addition theorem for spherical harmonics, Eq. (A3) can be written as:

$$\begin{aligned} -\frac{4\pi }{\varepsilon _{in}}\delta \left( \overrightarrow{r}- \overrightarrow{s}\right) =-\frac{1}{\varepsilon _{in}r^{2}}\delta \left( r-s\right) \sum \limits _{l=0}^{+\infty }\left( 2l+1\right) P_{l}\left( \cos \left( \xi \right) \right) \end{aligned}$$
(A4)

where \(P_{l}\left( \cos \left( \xi \right) \right)\) is the Legendre polynomial of l order and \(\xi\) is the angle between \(\overrightarrow{r} \equiv (r,\theta ,\varphi )\) and \(\overrightarrow{s}\equiv (s,\theta ^{^{\prime }},\varphi ^{^{\prime }})\). Supposing that the charge is sited on the z-axis, which means that \(\theta ^{^{\prime }}=0\) and \(\xi =\theta\), the Poisson equation expression becomes

$$\begin{aligned} \nabla ^2 V\left( \overrightarrow{r}-s\right) =-\frac{1}{\varepsilon _{in}r^{2}} \delta \left( r-s\right) \sum \limits _{l=0}^{+\infty }\left( 2l+1\right) P_{l}\left( \cos \left( \theta \right) \right) \end{aligned}$$
(A5)

Equation (A5), which is invariant with respect to the z-axis, can be solved by developing its solutions in the basis of Legendre polynomials:

$$\begin{aligned} V\left( \overrightarrow{r}-s\right) =\sum \limits _{l=0}^{+\infty }V_{l}\left( r-s\right) P_{l}\left( \cos \left( \theta \right) \right) \end{aligned}$$
(A6)

Expanding calculation using Eqs. (A5) and (A6), we get

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{1}{r^{2}}\frac{d}{dr}\left( r^{2}\frac{dV_{l}\left( r,s\right) }{dr} \right) -\frac{l\left( l+1\right) }{r^{2}}V_{l}\left( r,s\right) =-\frac{1}{ \varepsilon _{in}r^{2}}\left( 2l+1\right) , &{} \quad r=s \\ \frac{1}{r^{2}}\frac{d}{dr}\left( r^{2}\frac{dV_{l}\left( r,s\right) }{dr} \right) -\frac{l\left( l+1\right) }{r^{2}}V_{l}\left( r,s\right) =0, &{} \quad r\ne s \end{array} \right. \end{aligned}$$
(A7)

We search for solutions in the form \(V_{l}\left( r,s\right) =C\left( s\right) r^{m}.\) Proceeding with this we find that m may only take l and \(-(l+1)\) values. Thence, \(V_{l}\left( r,s\right)\) can be given as \(V_{l}\left( r,s\right) =C_{1}\left( s\right) r^{l}+C_{2}\left( s\right) r^{-\left( l+1\right) }\). The solutions of Eq. (A7) should respect these boundary conditions:

  1. I.

    - \(V_{l}^{QD}\left( r,s\right) \) must be regular for \(r=0\)

  2. II.

    - \(V_{l}^{matrix}\left( r,s\right) \rightarrow 0\) when \(r\rightarrow \infty\)

  3. III.

    - \(\left. V_{l}^{QD}\left( r,s\right) \right| _{r=R^{-}}=\left. V_{l}^{matrix}\left( r,s\right) \right| _{r=R^{+}}\)

  4. IV.

    - \(\left. \varepsilon _{in}dV_{l}^{QD}\left( r,s\right) /dr\right| _{r=R^{-}}=\left. \varepsilon _{out}dV_{l}^{matrix}\left( r,s\right) /dr\right| _{r=R^{+}}\)

  5. V.

    - Permutation of r and s must be verified i.e. \(V_{l}^{QD}\left( r,s\right) =V_{l}^{QD}\left( s,r\right)\)

Conditions I and II require that \(r^{-(l+1)}\) and \(r^{l}~\)coefficients in nanostructure and in matrix, respectively, are equal zero. Thus, the solutions of Eq. (A7) in different regions write:

$$\begin{aligned} V_{l}(r,s)=\left\{ \begin{array}{c} V_{l}^{QD}\left( r,s\right) =A\left( s\right) r^{l},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r<s \\ V_{l}^{QD}\left( r,s\right) =B\left( s\right) r^{l}+\frac{C\left( s\right) }{ r^{l+1}},\ \ \ s<r<R \\ V_{l}^{matrix}\left( r,s\right) =\frac{D\left( s\right) }{r^{l+1}},\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R<r \end{array} \right. \end{aligned}$$
(A8)

The four unknown coefficients A(s), B(s), C(s) and D(s) are determined using the three conditions (3) to (5). The final Poisson equation solution, which contains Coulomb interaction between two charges placed at \(\overrightarrow{r}\) and \(\overrightarrow{s}\) as well as their interaction with surface charge densities at boundaries, writes:

$$\begin{aligned}&V(r,s) \nonumber \\&\quad =\left\{ \begin{array}{c} V^{QD}\left( \overrightarrow{r},s\right) =\sum \limits _{l=0}^{\infty }h\left( r^{l}s^{l}+\frac{1}{u}\frac{r^{l}}{s^{l+1}}\right) P_{l}\left( \cos \left( \theta \right) \right) ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ r<s \\ V^{QD}\left( \overrightarrow{r},s\right) =\sum \limits _{l=0}^{\infty }h\left( s^{l}r^{l}+\frac{1}{u}\frac{s^{l}}{r^{l+1}}\right) P_{l}\left( \cos \left( \theta \right) \right) ,\ \ \ \ \ \ \ \ \ \ \ \ \ s<r<R \\ V^{Matrix}\left( \overrightarrow{r},s\right) =\sum \limits _{l=0}^{\infty }h\left( R^{2l+1}+\frac{1}{u}\right) \frac{s^{l}}{r^{l+1}}P_{l}\left( \cos \left( \theta \right) \right) ,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R<r \end{array} \right. \end{aligned}$$
(A9)

To determine h, we integrate Eq. (A7) from \(r-\kappa\) to \(r+\kappa\), where \(\kappa\) is an infinitesimal value. Doing calculations, we find \(h=u/\varepsilon _{in}\) where

$$\begin{aligned} u=\left( l+1\right) \left( \varepsilon _{in}-\varepsilon _{out}\right) /\left( l\varepsilon _{in}+\left( l+1\right) \varepsilon _{out}\right) R^{2l+1}.\qquad \end{aligned}$$
(26)

Coulomb interaction between two particles:

The potential energy describing the interaction between a source charge \(q_{1}\) and a target charge \(q_{2}\) writes:

$$\begin{aligned} V_{q_{1}\rightarrow q_{2}}=q_{1}q_{2}V\left( \overrightarrow{r},s\right) \end{aligned}$$
(A10)

Doing calculations with \(q_{1}=e\); \(q_{2}=-e\) ,\(~r=r_{e},~s=D\) and \(R=b\) it is not hard to find Eq. 8.

Self-polarization energy of single particle

The self-polarization energy \(W_{i}(r_{i})\) describing the interaction of a single-particle with surface charge distributions at material boundaries writes:

$$\begin{aligned} W_{i}\left( r\right) =\frac{1}{2}\left[ V_{r>s}\left( \overrightarrow{r} ,s\right) +V_{s>r}\left( \overrightarrow{s},r\right) \right] \end{aligned}$$
(A11)

Removing the terms \(r_{l}/s_{l}+1\) and \(s_{l}/r_{l}+1\) when \(r<s\) and \(s<r\) respectively which represent the pure Coulomb interaction term and by setting \(q_{1}=q_{2}=e\) and \(\theta =0\) we can easily obtain Eq.7.

Appendix B: Polaron - induced screened Coulomb potential

This appendix briefly outlines the derivation of the polaron-induced modification of a Coulombic potential related with an ionized impurity center in a polar crystal. The formulation was originally put forward for excitons by Aldrich and Bajaj [84], following Haken results via Lee-Low-Pines (LLP) variational formalism [83]. Instead, the approach by Aldrich and Bajaj makes use of the free polaron variational wave function proposed by Haga [85]. The system consists of an electron coupled to the screened Coulomb potential, assumed to be located at the origin. The Hamiltonian writes:

$$\begin{aligned} H_{0}=\frac{{p}^{2}}{2m}-\frac{e^{2}}{\varepsilon _{\infty }\left| \mathbf {r }\right| }+\sum \limits _{\mathbf {q}}\hbar \omega b_{q}^{+}b_{q}+\sum \limits _{ \mathbf {q}}\left[ \gamma _{q} e^{i\mathbf {q}.\mathbf {r}} b_{q}+cc\right] \end{aligned}$$
(B1)

where \(b_{q}^{+}\) and \(b_{q}\) are the creation and annihilation LO phonon operators of wavevector \(\mathbf {q}\), \(\omega\) is the optical phonon frequency, p is the momentum of the electron and \(\mathbf {r}\,\) its position coordinate. Besides, m is the conduction band mass.

The quantity \(\gamma _{q}\) is given as:

$$\begin{aligned} \gamma _{q}=-\frac{-i\hbar \omega }{q}\left( \frac{4\pi \alpha }{\beta V} \right) ^{1/2}, \end{aligned}$$
(B2)

where V is the crystal volume, \(\alpha =1/2\overline{\varepsilon } \left( e^{2}\beta /\hbar \omega \right)\) is the so-called Frölich constant, with \(\beta =\left( 2m\omega /\hbar \right) ^{1/2}\). The quantity \(1/ \overline{\varepsilon }=1/\varepsilon _{\infty }-1/\varepsilon _{0}\) is the inverse reduced dielectric constant, with \(\varepsilon _{\infty }\) and \(\varepsilon _{0}\) being the static dielectric and high-frequency constants, respectively.

To derive the effective potential the model employs the following wavefunction:

$$\begin{aligned} \psi (\mathbf {r}) =\sum \limits _{\mathbf {k}}C_{k}\phi _{k}\left( r,b_{q}^{+}\right) \end{aligned}$$
(B3)

Where \(\phi _{k}\left( r,b_{q}^{+}\right)\) is the free polaron wavefunction [85]:

$$\begin{aligned} \phi _{k}\left( r,b_{q}^{+}\right) =e^{i\mathbf {k}.\mathbf {r}} U\left( 1+\sum \limits _{q}c_{q}b_{q}^{+}\right) \left| \phi _{0}\right\rangle \end{aligned}$$
(B4)

where U is the LLP canonical transformation and \(\left| \phi _{0}\right\rangle\) is the phonon vacuum state [86], and

$$\begin{aligned} c_q=4i\left( \frac{\pi \alpha \beta ^3}{V}\right) ^{1/2}\frac{qe^{-i\mathbf {q}\cdot \mathbf {r}}}{(1+\alpha /2)(q^2+\beta ^2)^2} \end{aligned}$$
(B5)

The effective Hamiltonian for the poalron interacting with the screened Coulomb center arises from the expression \(H=\langle \psi (\mathbf {r})|H_0|\psi ( \mathbf {r})\rangle\):

$$\begin{aligned} H_{AB}=-\alpha \hbar \omega +\frac{p^{2}}{2m^{*}}+V_{AB}\left( r\right) \end{aligned}$$
(B6)

where \(m^{*}\), the Haga polaron mass, is defined as:

$$\begin{aligned} m^{*}=\frac{m\left( 1+\alpha /6\right) }{1-\alpha /12} \end{aligned}$$
(B9)

and

$$\begin{aligned} V_{AB}(r)=-\frac{e^2}{\varepsilon _{\infty }}+ \frac{e^{2}\beta }{2 \overline{ \varepsilon }}\frac{e^{-\beta r}}{\left\{ 1+\alpha /\left[ 4\left( 1+\alpha /12\right) ^{2}\right] \right\} \left( 1+\alpha /12\right) } +V_{H}\left( r\right) \end{aligned}$$
(B9)

is the Aldrich-Bajaj modified electrostatic potential with

$$\begin{aligned} V_{H}\left( r\right) =\frac{e^{2}}{\overline{\varepsilon }r}\left( 1-\frac{ e^{-\beta r}}{2}\right) \end{aligned}$$
(B9)

representing the Haken-like potential. Thus, we are led to the Eq. (12) of the article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talbi, A., El Haouari, M., Nouneh, K. et al. LO-Phonons and dielectric polarization effects on the electronic properties of doped GaN/InN spherical core/shell quantum dots in a nonparabolic band model. Appl. Phys. A 127, 30 (2021). https://doi.org/10.1007/s00339-020-04137-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04137-6

Keywords

Navigation