Skip to main content
Log in

Research on deposited tracks and microstructures of AlSi10Mg alloy produced by selective laser melting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The selective laser melting (SLM) process parameters significantly affect the bonding of melting powders and the substrate or deposited layer, and the microstructure of end-use components. In this study, single track, double track and cubic sample SLM experiments were carried out to investigate the effect of process parameters on the surface morphology of SLM-fabricated AlSi10Mg alloy. The hierarchical microstructures discriminated by the Si phase are observed in SLM-processed AlSi10Mg samples. The formation mechanism of the hierarchical microstructures is elucidated. The formula proved that the solidification rate (R) increases gradually from the boundary to the center of the melt pool. Coarse zones are formed by the instantaneous existence of an extremely high ratio of thermal gradient (G) and solidification rate at the melt pool boundary, where solidification microstructure grows planar. With the heat propagating, a gradual change of the G/R ratio appears and the microstructure turns to columnar-dendritic growth, creating the fine zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta. Mater. 117, 371–392 (2016)

    Article  Google Scholar 

  2. E. Louvis, P. Fox, C.J. Sutcliffe, J. Mater. Process. Technol. 211(2), 275–284 (2011)

    Article  Google Scholar 

  3. J. Alloy, Compd. 734, 1414–1421 (2018)

    Google Scholar 

  4. X. Liu, C. Zhao, X. Zhou, Z. Shen, W. Liu, Mater. Des. 168, 107677 (2019)

    Article  Google Scholar 

  5. A. Simchi, Mater. Sci. Eng. A 428(1–2), 148–158 (2006)

    Article  Google Scholar 

  6. N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Addit. Manuf. 1–4, 77–86 (2014)

    Google Scholar 

  7. L.Z. Wang, S. Wang, J.J. Wu, Opt. Laser. Technol. 96, 88–96 (2017)

    Article  ADS  Google Scholar 

  8. N. Read, W. Wang, K. Essa, M.M. Attallah, Mater. Des. 65, 417–424 (2015). (1980-2015)

    Article  Google Scholar 

  9. I. Rosenthal, M. Nahmany, A. Stern, N. Frage, Adv. Mater. Res. 1111, 62–66 (2015)

    Article  Google Scholar 

  10. K. Kempen, L. Thijs, J. Van Humbeeck, J.P. Kruth, Phys. Procedia. 39, 439–446 (2012)

    Article  ADS  Google Scholar 

  11. W. Li, S. Li, J. Liu, A. Zhang, Y. Zhou, Q. Wei, C. Yan, Y. Shi, Mater. Sci. Eng. A 663, 116–125 (2016)

    Article  Google Scholar 

  12. J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Acta. Mater. 117, 311–320 (2016)

    Article  Google Scholar 

  13. C.A. Biffi, J. Fiocchi, A. Tuissi, J. Alloy. Compd. 755, 100–107 (2018)

    Article  Google Scholar 

  14. M. Liu, N. Takata, A. Suzuki, M. Kobashi, Mater. Des. 157, 478–491 (2018)

    Article  Google Scholar 

  15. C. Yan, L. Hao, A. Hussein, P. Young, J. Huang, W. Zhu, Mater. Sci. Eng. A 628, 238–246 (2015)

    Article  Google Scholar 

  16. L. Zhou, A. Mehta, E. Schulz, B. McWilliams, K. Cho, Y. Sohn, Mater. Charact. 143, 5–17 (2018)

    Article  Google Scholar 

  17. L. Thijs, K. Kempen, J.P. Kruth, J. Van Humbeeck, Acta. Mater. 61(5), 1809–1819 (2013)

    Article  Google Scholar 

  18. P. Wei, Z. Wei, Z. Chen, J. Du, Y. He, J. Li, Y. Zhou, Appl. Surf. Sci. 408, 38–50 (2017)

    Article  ADS  Google Scholar 

  19. C. Zhang, H. Zhu, Z. Hu, L. Zhang, X. Zeng, Mater. Sci. Eng. A 746, 416–423 (2019)

    Article  Google Scholar 

  20. X. Zhou, X. Liu, D. Zhang, Z. Shen, W. Liu, J. Mater. Process. Technol. 222, 33–42 (2015)

    Article  Google Scholar 

  21. N. Uzan, I. Rosenthal, A. Stern, Metall. Microstruct, Anal. 5(6), 512–519 (2016)

    Article  Google Scholar 

  22. W.E. King, H.D. Barth, V.M. Castillo, G.F. Gallegos, J.W. Gibbs, D.E. Hahn, C. Kamath, A.M. Rubenchik, J. Mater. Process. Technol. 214(12), 2915–2925 (2014)

    Article  Google Scholar 

  23. S.S. Dong, X.X. Zhang, F. Ma, J.Z. Jiang, W. Yang, Z.X. Lin, C.B. Chen, Mater. Res. Express 7, 025801 (2020)

    ADS  Google Scholar 

  24. W. Kurz, B. Giovanola, R. Trivedi, Acta metall 34(5), 823–883 (1985)

    Article  Google Scholar 

  25. E. Brandl, U. Heckenberger, V. Holzinger, D. Buchbinder, Mater. Des. 34, 159–169 (2012)

    Article  Google Scholar 

  26. W. Zhang, Welding Metallurgy: Fundamentals, 1st edn. (China Machine Press, Beijing, 2012), pp. 115–135

    Google Scholar 

  27. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, M. Kobashi, Mater. Sci. Eng. A 704, 218–228 (2017)

    Article  Google Scholar 

  28. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92, 112–224 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China under Grant No. 51805313 and Industry-University-Research Collaboration Project between Shanghai University of Engineering Science and PMG 3D Technologies (Shanghai) Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxun Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Zhang, X., Ma, F. et al. Research on deposited tracks and microstructures of AlSi10Mg alloy produced by selective laser melting. Appl. Phys. A 126, 643 (2020). https://doi.org/10.1007/s00339-020-03826-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03826-6

Keywords

Navigation