Skip to main content
Log in

The effects of the nanostructure of mesoporous TiO2 on optical band gap energy

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mesoporous TiO2 is prepared by sol–gel process with a triblock copolymer as an organic template and aqueous TiOCl2 solution as inorganic precursor. The XRD patterns reveal that only the anatase phase can be observed in mesoporous TiO2, regardless of the different calcining temperatures, and with increasing calcining temperature the grain size gradually increases. The grain sizes of TiO2 increased from 4.7 to 11.9 nm with calcining temperature increasing from 300 to 400 °C. The pore size and the surface area evaluated from the Barrett–Joyner–Halenda model and Brunauer–Emmett–Teller method indicated that the average pore sizes increased from 87 to 153 Å and specific surface areas decreased from 179.71 to 74.31 m2/g for 300–400 °C calcination. The relationship between the optical band gap (E g) and microstructure of anatase has been determined and discussed. The quantum confinement effect is observed at grain sizes lower than 10 nm, and the estimated E g shifts from 3.32 to 3.46 eV. These results suggest that there are potential applications of mesostructured TiO2 with nanocrystals in the design of optical devices and photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gratzel M (2001) J Sol-Gel Sci Technol 22:7

    Article  CAS  Google Scholar 

  2. Tanaka Y, Suganuma M (2001) J Sol-Gel Sci Technol 22:83

    Article  CAS  Google Scholar 

  3. Traversa E, Di Vona ML, Licoccia S, Sacerdoti M, Carotta MC, Crema L, Martinelli G (2001) J Sol-Gel Sci Technol 22:167

    Article  CAS  Google Scholar 

  4. Di Claudio D, Phani AR, Santucci S (2007) Opt Mater 30:279

    Article  CAS  ADS  Google Scholar 

  5. Li YZ, Lee N-H, Song JS, Lee EG, Kim S-J (2005) Res Chem Intermed 31:309

    Article  CAS  MATH  Google Scholar 

  6. Kosacki I, Anderson HU (2000) Ionics 6:294

    Article  CAS  Google Scholar 

  7. Zhang WF, Zhang MS, Yin Z (2000) Physica Status Solidi (a) 179:319

    Article  CAS  ADS  Google Scholar 

  8. Peng HW, Li JB (2008) J Phys Chem C 112:20241

    Article  CAS  Google Scholar 

  9. Brus LE (1984) J Chem Phys 80:4403

    Article  CAS  ADS  Google Scholar 

  10. Brus LE (1986) J Phys Chem 90:2555

    Article  CAS  Google Scholar 

  11. Wang Y, Suna A, Mahler W, Kasowski R (1987) J Chem Phys 87:7315

    Article  CAS  ADS  Google Scholar 

  12. Stone VF, Davis RJ (1998) Chem Mater 10:1468

    Article  CAS  Google Scholar 

  13. Bosc F, Ayral A, Albouy P, Guizard C (2003) Chem Mater 15:2463

    Article  CAS  Google Scholar 

  14. Zhao LL, Yu Y, Song LX, Hu XF, Larbot A (2005) Appl Surf Sci 239:285

    Article  CAS  ADS  Google Scholar 

  15. Shioy Y, Ikeue K, Ogawa M, Anpo M (2003) Appl Catal A Gen 254:251

    Article  Google Scholar 

  16. Qi ZM, Honma I, Zhou H (2006) Appl Phys Lett 88:053503

    Article  ADS  Google Scholar 

  17. Vogel R, Meredith P, Kartini I, Harvey M, Riches JD, Bishop A, Heckenberg N, Trau M, Rubinsztein-Dunlop H (2003) Chem Phys Chem 4:595

    CAS  PubMed  Google Scholar 

  18. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  19. Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309

    Article  CAS  ADS  Google Scholar 

  20. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  21. Wang K, Morris MA, Holmes JD (2005) Chem Mater 17:1269

    Article  CAS  Google Scholar 

  22. Sinha AK, Suzuki K (2005) J Phys Chem B 109:1708

    Article  CAS  PubMed  Google Scholar 

  23. Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  24. Reddy KM, Manorama SV, Reddy AR (2002) Mater Chem Phys 78:239

    Article  Google Scholar 

  25. Tian GL, He HB, Shao JD (2005) Chin Phy Lett 22:1787

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Council of Taiwan, the Republic of China, grant No. NSC 97-2221-E-020-024 and NSC 98-2221-E-020-020, which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lay Gaik Teoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, YC., Chang, Y.S., Teoh, L.G. et al. The effects of the nanostructure of mesoporous TiO2 on optical band gap energy. J Sol-Gel Sci Technol 56, 33–38 (2010). https://doi.org/10.1007/s10971-010-2269-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2269-7

Keywords

Navigation