Skip to main content
Log in

Coexistence of superparamagnetism and spin-glass like behavior in zinc-substituted cobalt ferrite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have performed a systematic study on the effect of Zn substitution on the structural and magnetic properties of crystalline zinc-substituted cobalt ferrite nanoparticles, \(\mathrm {Zn}_{{x}}\hbox {Co}_{{1-x}}\hbox {Fe}_{2}\hbox {O}_{4}\) with x = 0, 0.25, 0.5, 0.75, and 1, prepared by hydrothermal method. The structural and magnetic properties of these nanoparticles were investigated by XRD, TEM, FTIR, and VSM. All the ferrite nanoparticles were prepared with sizes smaller than 20 nm, thus lying within the range of single-domain regime. The results of Rietveld refinement revealed that all prepared nanoparticles were cubic and single phase, and the increase in Zn concentration resulted in an increase in the lattice constant, x-ray density, and the average bond length on tetrahedral sites. The TEM measurements showed that the nanoparticles were monodisperse and spherical in shape. All FTIR spectra of the prepared ferrites showed two dominant absorption bands, thus confirming the formation of single-phase spinel structure with two sub-lattices: tetrahedral (A-site) and octahedral (B-site). The room temperature M versus H magnetization measurements revealed that the ferrite nanoparticles were ferromagnetic for x = 0 and superparamagnetic for \(x\ge 0.25\). At 10 K, all ferrite nanoparticles showed ferrimagnetic behavior that is weakened by Zn substitution. The saturation magnetization and the first anisotropy constant were observed to decrease with increasing Zn concentration. The zero field cooled and field cooled magnetization data revealed that both superparamagnetic and spin-glass like states may coexist together depending on amount of Zn concentration and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Ashoori, Electrons in artificial atoms. Nature 379(6564), 413 (1996)

    Article  ADS  Google Scholar 

  2. A. López-Ortega, E. Lottini, C.J. Fernandez, C. Sangregorio, Exploring the magnetic properties of cobalt-ferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 27(11), 4048–4056 (2015)

    Article  Google Scholar 

  3. L. Zhao, H. Zhang, Y. Xing, S. Song, S. Yu, W. Shi, X. Guo, J. Yang, Y. Lei, F. Cao, Studies on the magnetism of cobalt ferrite nanocrystals synthesized by hydrothermal method. J. Solid State Chem. 181(2), 245–252 (2008)

    Article  ADS  Google Scholar 

  4. Y. Zheng, L. Jia, F. Xu, G. Wang, X. Shi, H. Zhang, Microstructures and magnetic properties of low temparature sintering nicuzn ferrite ceramics for microwave applications. Ceram. Int. 45(17), 22163–22168 (2019)

    Article  Google Scholar 

  5. M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv. Colloid Interface Sci. 265, 29–44 (2019)

    Article  Google Scholar 

  6. T. Dippong, E.A. Levei, O. Cadar, I.G. Deac, L. Diamandescu, L. Barbu-Tudoran, Effect of nickel content on structural, morphological and magnetic properties of nixco1-xfe2o4/sio2 nanocomposites. J. Alloy. Compd. 786, 330–340 (2019)

    Article  Google Scholar 

  7. A. Goldman, Modern Ferrite Technology (Springer, Berlin, 2006)

    Google Scholar 

  8. R. Raland, D. Saikia, C. Borgohain, J. Borah, Heating efficiency and correlation between the structural and magnetic properties of oleic acid coated MnFe2O4 nanoparticles for magnetic hyperthermia application. J. Phys. D Appl. Phys. 50(32), 325004 (2017)

    Article  Google Scholar 

  9. R. Valenzuela, Magnetic Ceramics, vol. 4 (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  10. X. Meng, H. Li, J. Chen, L. Mei, K. Wang, X. Li, Mössbauer study of cobalt ferrite nanocrystals substituted with rare-earth Y3+ ions. J. Magn. Magn. Mater. 321(9), 1155–1158 (2009)

    Article  ADS  Google Scholar 

  11. T. Dippong, F. Goga, E.-A. Levei, O. Cadar, Influence of zinc substitution with cobalt on thermal behaviour, structure and morphology of zinc ferrite embedded in silica matrix. J. Solid State Chem. 275, 159–166 (2019)

    Article  ADS  Google Scholar 

  12. M.S. Darwish, H. Kim, H. Lee, C. Ryu, J.Y. Lee, J. Yoon, Synthesis of magnetic ferrite nanoparticles with high hyperthermia performance via a controlled co-precipitation method. Nanomaterials 9(8), 1176 (2019)

    Article  Google Scholar 

  13. A. Tawfik, I. Hamada, O. Hemeda, Effect of laser irradiation on the structure and electromechanical properties of Co-Zn ferrite. J. Magn. Magn. Mater. 250, 77–82 (2002)

    Article  ADS  Google Scholar 

  14. G. Duong, N. Hanh, D. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer, Monodispersed nanocrystalline Co1-xZnxFe2O4 particles by forced hydrolysis: synthesis and characterization. J. Magn. Magn. Mater. 311(1), 46–50 (2007)

    Article  ADS  Google Scholar 

  15. U. Naresh, R.J. Kumar, K.C.B. Naidu, Hydrothermal synthesis of barium copper ferrite nanoparticles: nanofiber formation, optical, and magnetic properties. Mater. Chem. Phys. 236, 121807 (2019)

    Article  Google Scholar 

  16. G. Maity, P. Maji, S. Sain, S. Das, T. Kar, S. Pradhan, Microstructure, optical and electrical characterizations of nanocrystalline znal2o4 spinel synthesized by mechanical alloying: effect of sintering on microstructure and properties. Physica E 108, 411–420 (2019)

    Article  ADS  Google Scholar 

  17. D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions. Chem. Eng. J. 129(1–3), 51–65 (2007)

    Article  Google Scholar 

  18. C. Chinnasamy, B. Jeyadevan, K. Shinoda, K. Tohji, D. Djayaprawira, M. Takahashi, R.J. Joseyphus, A. Narayanasamy, Unusually high coercivity and critical single-domain size of nearly monodispersed cofe 2 o 4 nanoparticles. Appl. Phys. Lett. 83(14), 2862–2864 (2003)

    Article  ADS  Google Scholar 

  19. T. Dippong, E.A. Levei, I.G. Deac, E. Neag, O. Cadar, Influence of cu2+, ni2+, and zn2+ ions doping on the structure, morphology, and magnetic properties of co-ferrite embedded in sio2 matrix obtained by an innovative sol-gel route. Nanomaterials 10(3), 580 (2020)

    Article  Google Scholar 

  20. H. Jalili, B. Aslibeiki, A.G. Varzaneh, V.A. Chernenko, The effect of magneto-crystalline anisotropy on the properties of hard and soft magnetic ferrite nanoparticles. Beilstein J. Nanotechnol. 10(1), 1348–1359 (2019)

    Article  Google Scholar 

  21. S. Amiri, H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science. Mater. Sci. Eng., C 33(1), 1–8 (2013)

    Article  Google Scholar 

  22. M. Şincai, D. Gâng, D. Bica, L. Vékás, The antitumor effect of locoregional magnetic cobalt ferrite in dog mammary adenocarcinoma. J. Magn. Magn. Mater. 225(1–2), 235–240 (2001)

    Article  ADS  Google Scholar 

  23. A.L. Tiano, G.C. Papaefthymiou, C.S. Lewis, J. Han, C. Zhang, Q. Li, C. Shi, A.M. Abeykoon, S.J. Billinge, E. Stach et al., Correlating size and composition-dependent effects with magnetic, mossbauer, and pair distribution function measurements in a family of catalytically active ferrite nanoparticles. Chem. Mater. 27(10), 3572–3592 (2015)

    Article  Google Scholar 

  24. R.A. Young, The Rietveld Method, vol. 5 (International Union of Crystallography, Chester, 1993)

    Google Scholar 

  25. K.E. Sickafus, R. Hughes, Spinel Compounds: Structure and Property Relations (American Ceramic Society, Westerville, 1999)

    Google Scholar 

  26. L. Kumar, P. Kumar, A. Narayan, M. Kar, Rietveld analysis of xrd patterns of different sizes of nanocrystalline cobalt ferrite. Int. Nano Lett. 3(1), 8 (2013)

    Article  Google Scholar 

  27. R. Bujakiewicz-Korońska, Ł. Hetmańczyk, B. Garbarz-Glos, A. Budziak, A. Kalvane, K. Bormanis, K. Drużbicki, Low temperature measurements by infrared spectroscopy in cofe2o4 ceramic. Open Phys. 10(5), 1137–1143 (2012)

    Article  ADS  Google Scholar 

  28. J. Gomes, M. Sousa, F. Tourinho, J. Mestnik-Filho, R. Itri, J. Depeyrot, Rietveld structure refinement of the cation distribution in ferrite fine particles studied by x-ray powder diffraction. J. Magn. Magn. Mater. 289, 184–187 (2005)

    Article  ADS  Google Scholar 

  29. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffr., Theor. General Crystallogr. 32(5), 751–767 (1976)

    Article  ADS  Google Scholar 

  30. B. Toksha, S.E. Shirsath, S. Patange, K. Jadhav, Structural investigations and magnetic properties of cobalt ferrite nanoparticles prepared by sol-gel auto combustion method. Solid State Commun. 147(11–12), 479–483 (2008)

    Article  ADS  Google Scholar 

  31. D.S. Nikam, S.V. Jadhav, V.M. Khot, R. Bohara, C.K. Hong, S.S. Mali, S. Pawar, Cation distribution, structural, morphological and magnetic properties of co 1–x zn x fe 2 o 4 (x= 0–1) nanoparticles. RSC Adv. 5(3), 2338–2345 (2015)

    Article  Google Scholar 

  32. K. Praveena, K. Sadhana, Ferromagnetic properties of zn substituted spinel ferrites for high frequency applications. Int. J. Sci. Res. Publ. 5(4), 1–21 (2015)

    Google Scholar 

  33. S.-T. Xu, Y.-Q. Ma, Y.-F. Xu, X. Sun, B.-Q. Geng, G.-H. Zheng, Z.-X. Dai, Pure dipolar-interacted cofe2o4 nanoparticles and their magnetic properties. Mater. Res. Bull. 62, 142–147 (2015)

    Article  Google Scholar 

  34. M. Chithra, C. Anumol, B. Sahu, S.C. Sahoo, Structural and magnetic properties of znxco1- xfe2o4 nanoparticles: nonsaturation of magnetization. J. Magn. Magn. Mater. 424, 174–184 (2017)

    Article  ADS  Google Scholar 

  35. L. Kumar, M. Kar, Effect of annealing temperature and preparation condition on magnetic anisotropy in nanocrystalline cobalt ferrite. IEEE Trans. Magn. 47(10), 3645–3648 (2011)

    Article  ADS  Google Scholar 

  36. K. Maaz, A. Mumtaz, S. Hasanain, A. Ceylan, Synthesis and magnetic properties of cobalt ferrite (cofe2o4) nanoparticles prepared by wet chemical route. J. Magn. Magn. Mater. 308(2), 289–295 (2007)

    Article  ADS  Google Scholar 

  37. C. Iacovita, A. Florea, L. Scorus, E. Pall, R. Dudric, A.I. Moldovan, R. Stiufiuc, R. Tetean, C.M. Lucaciu, Hyperthermia, cytotoxicity, and cellular uptake properties of manganese and zinc ferrite magnetic nanoparticles synthesized by a polyol-mediated process. Nanomaterials 9(10), 1489 (2019)

    Article  Google Scholar 

  38. R. Topkaya, A. Baykal, A. Demir, Yafet-Kittel-type magnetic order in zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanopart. Res. 15(1), 1359 (2013)

    Article  ADS  Google Scholar 

  39. G. Muscas, S. Jovanović, M. Vukomanović, M. Spreitzer, D. Peddis, Zn-doped cobalt ferrite: tuning the interactions by chemical composition. J. Alloy. Compd. 796, 203–209 (2019)

    Article  Google Scholar 

  40. A. Nairan, M. Khan, U. Khan, M. Iqbal, S. Riaz, S. Naseem, Temperature-dependent magnetic response of antiferromagnetic doping in cobalt ferrite nanostructures. Nanomaterials 6(4), 73 (2016)

    Article  Google Scholar 

  41. E. Del Barco, J. Asenjo, X. Zhang, R. Pieczynski, A. Julia, J. Tejada, R. Ziolo, D. Fiorani, A. Testa, Free rotation of magnetic nanoparticles in a solid matrix. Chem. Mater. 13(5), 1487–1490 (2001)

    Article  Google Scholar 

  42. K. Nadeem, H. Krenn, T. Traußnig, R. Würschum, D. Szabó, I. Letofsky-Papst, Effect of dipolar and exchange interactions on magnetic blocking of maghemite nanoparticles. J. Magn. Magn. Mater. 323(15), 1998–2004 (2011)

    Article  ADS  Google Scholar 

  43. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, T.R. Lee, Tuning the magnetic properties of nanoparticles. Int. J. Mol. Sci. 14(8), 15977–16009 (2013)

    Article  Google Scholar 

  44. W. Mohamed, M. Alzaid, M.S.M. Abdelbaky, Z. Amghouz, S. García-Granda, A.M. Abu-Dief, Impact of Co2+ substitution on microstructure and magnetic properties of coxzn1-xfe2o4 nanoparticles. Nanomaterials 9(11), 1602 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the deanship of scientific research at the Hashemite University under Project Number: 5/2016. We also acknowledge the Nanotechnology Research Facility of Kuwait University under Project Number: GE01/07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gassem M. Alzoubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzoubi, G.M., Alsmadi, A.M., Alna’washi, G.A. et al. Coexistence of superparamagnetism and spin-glass like behavior in zinc-substituted cobalt ferrite nanoparticles. Appl. Phys. A 126, 512 (2020). https://doi.org/10.1007/s00339-020-03655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03655-7

Keywords

Navigation