Skip to main content
Log in

Sputtering of size-tunable oxidized Fe nanoparticles by gas flow method

  • Published:
Applied Physics A Aims and scope Submit manuscript

24 February 2021 Editor's Note: Based on the explanation provided by the authors and their institution, the Editor-in-Chief concluded that no further editorial action is needed.

01 October 2020 Editor's Note: The Editor-in-Chief is currently investigating this article as concerns have been raised about the integrity of the data. Further editorial action may be taken as appropriate once the investigation into the concerns is complete and all parties have been given an opportunity to respond in full.

Abstract

Systematic optimization of sputter parameters allowed the growth of size-tunable ferric nanoparticles on glassy-carbon substrates using gas flow sputtering technique. By variation of the sputtering pressure and particle aggregation length, Fe nanoparticles with mean diameter ranging between 20 and 150 nm were formed. Several physical and optical techniques were used to examine the size and morphology of the nanoparticles. While nanoparticles were revealed as spherical, their crystalline structure was detected only for the hematite type of Fe. By fostering the sputtering growth using Ar and He admixture flow, density variation within the grown particles was established, offering a strategy to overcome the slow growth rates in the sputter sources. Magnetization measurements taken at room temperature did not show evidence of the impact of size on the magnetic properties of the nanoparticles. Thus, saturation magnetization and coercivity values were obtained. Measurements of the linear optical properties of the sputtered nanoparticles showed a general decrease in extinction with decreasing nanoparticle size. Monotonically decreasing spectra were observed, except for a shoulder in the 300–400 nm range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 01 October 2020

    Editor's Note: The Editor-in-Chief is currently investigating this article as concerns have been raised about the integrity of the data. Further editorial action may be taken as appropriate once the investigation into the concerns is complete and all parties have been given an opportunity to respond in full.

  • 24 February 2021

    Editor's Note: Based on the explanation provided by the authors and their institution, the Editor-in-Chief concluded that no further editorial action is needed.

References

  1. A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, N. Yokoyama, Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation. Appl. Phys. Lett. 73, 1071 (1998)

    Article  ADS  Google Scholar 

  2. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

    Book  Google Scholar 

  3. R.F. Haglund, L. Yang, R.H. Magruder, C.W. White, R.A. Zuhr, L. Yang, R. Dorsinville, R.R. Alfano, Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation Nucl. Instrum. Methods Phys. Res. B 91, 493 (1994)

    Article  ADS  Google Scholar 

  4. R.M. Rioux, H. Song, J.D. Hoefelmeyer, P. Yang, G.A. Somorjai, High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. Phys. Chem. B 109(6), 2192 (2005)

    Article  Google Scholar 

  5. K. Racka, M. Gich, A. S´lawska-Waniewskaa, A. Roig, E. Molins, Magnetic properties of Fe nanoparticle systems. J. Magn. Magn. Mater. 290–291, 127–130 (2005)

    Article  ADS  Google Scholar 

  6. P. Guardia, A. Labarta, X. Batlle, Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J. Phys. Chem. C 115(2), 390 (2011)

    Article  Google Scholar 

  7. H.C. Choi, S. Kundaria, D. Wang, A. Javey, Q. Wang, M. Rolandi, H. Dai, Efficient formation of iron nanoparticles catalysts on silicon oxide by hydroxylamine for carbon nanotubes synthesis and electronics. Nano Lett. 3(2), 157 (2003)

    Article  ADS  Google Scholar 

  8. E.A. Périgo, G. Hemery, O. Sandre, D. Ortega, E. Garaio, F. Plazaola, F.J. Teran, Fundamentals and advances in magnetic hyperthermia. Appl. Phys. Rev. 2, 041302 (2015)

    Article  ADS  Google Scholar 

  9. Y.-X.J. Wang, Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant. Imaging Med. Surg. 1, 35–40 (2011)

    Google Scholar 

  10. O. Veiseh, J.W. Gunn, M. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 62, 284–304 (2010)

    Article  Google Scholar 

  11. Y. Liu, G. Su, B. Zhang, G. Jiang, B. Yan, Nanoparticle-based strategies for detection and remediation of environmental pollutants. Analyst 136, 872–877 (2011)

    Article  ADS  Google Scholar 

  12. J. Liu, Z. Zhao, G. Jiang, Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ. Sci. Technol. 42, 6949–6954 (2008)

    Article  ADS  Google Scholar 

  13. A. Tasaki, S. Tomiyama, S. Iida, N. Wada, R. Uyeda, Magnetic properties of ferromagnetic metal fine particles prepared by evaporation in argon gas. Jpn. J. Appl. Phys. 4(10), 707 (1965)

    Article  ADS  Google Scholar 

  14. D. Farrell, S.A. Majetich, J.P. Wilcoxon, Preparation and characterization of monodisperse Fe nanoparticles. J. Phys. Chem. B 107(40), 11022 (2003)

    Article  Google Scholar 

  15. P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, C.J. Serna, Synthesis, Properties and Biomedical Applications of Magnetic Nanoparticles, Handbook of Magnetic Materials (Elsevier, Amsterdam, 2006)

    Google Scholar 

  16. M. Tominaga, M. Matsumoto, K. Soejima, I. Taniguchi, Size control for two-dimensional iron oxide nanodots derived from biological molecules. J. Colloid Interf. Sci. 299, 761–765 (2006)

    Article  ADS  Google Scholar 

  17. T. Sugimoto, K. Sakata, Preparation of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interf. Sci. 152, 587–590 (1992)

    Article  ADS  Google Scholar 

  18. T. Sugimoto, K. Sakata, A. Muramatsu, Formation mechanism of monodisperse pseudocubic α-Fe2O3 particles from condensed ferric hydroxide gel. J. Colloid Interf. Sci. 159, 372–382 (1993)

    Article  ADS  Google Scholar 

  19. D.E. Zhang, Z.W. Tong, S.Z. Li, X.B. Zhang, A.L. Ying, Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater. Lett. 62, 4053–4055 (2008)

    Article  Google Scholar 

  20. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, M.J. Garcia-Celma, Nano-emulsions. Curr. Opin. Colloid Interf. Sci. 10, 102–110 (2005)

    Article  Google Scholar 

  21. Z. Zhang, Q. Zhang, L. Xu, Y. Xia, Preparation of nanometer γ-Fe2O3 by an electrochemical method in non-aqueous medium and reaction dynamics. Synth. React. Inorg. Met.-Org. Nano-MetChem. 37, 53–56 (2007)

    Article  Google Scholar 

  22. J. Pinkas, V. Reichlova, R. Zboril, Z. Moravec, P. Bezdicka, J. Matejkova, Sonochemical synthesis of amorphous nanoscopic iron(III) oxide from Fe(acac)3. Ultrason. Sonochem. 15, 257–264 (2008)

    Article  Google Scholar 

  23. K. Ishii, High-rate low kinetic energy gas-flow-sputtering system. J. Vac. Sci. Technol. 7, 256 (1989)

    Article  ADS  Google Scholar 

  24. K. Ishii, K. Amano, H. Hamakake, Hollow cathode sputtering cluster source for low energy deposition: deposition of Fe small clusters. J. Vac. Sci. Technol., A 17(1), 310 (1999)

    Article  ADS  Google Scholar 

  25. H. Sakuma, H. Aoshima, K. Ishii, Size-controlled growth of Fe nanoparticles in gas flow sputtering process. J. Magn. 11(3), 103–107 (2006)

    Article  Google Scholar 

  26. H. Aoshima, H. Suzuki, H. Sakuma, K. Ishii, Fabrication of Fe nanoparticles with sizes ranging from 30 to 170 nm by gas flow sputtering. J. Appl. Phys. 105, 07B519 (2009)

    Article  Google Scholar 

  27. W. Knauer, Formation of large metal clusters by surface nucleation. J. Appl. Phys. 62, 841 (1987)

    Article  ADS  Google Scholar 

  28. T. Hihara, K. Sumiyama, Formation and size control of a Ni cluster by plasma gas condensation. J. Appl. Phys. 84, 5270 (1998)

    Article  ADS  Google Scholar 

  29. A.N. Banerjee, R. Krishna, B. Das, Size controlled deposition of Cu and Si nano-clusters by an ultra-high vacuum sputtering gas aggregation technique. Appl. Phys. A Mater. Sci. Process. 90, 299 (2007)

    Article  ADS  Google Scholar 

  30. V.I. Levitas, A.M. Roy, D.L. Preston, Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B 88, 054113 (2013)

    Article  ADS  Google Scholar 

  31. V.I. Levitas, A.M. Roy, Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B 91, 174109 (2015)

    Article  ADS  Google Scholar 

  32. Yves Huttel et. al, book of Gas-Phase Synthesis of Nanoparticles, 1st edn (Wiley-VCH publisher; June 19 2017). ISBN-10: 9783527340606, ISBN-13: 978-3527340606

  33. Malak Khojasteh, Vitaly V. Kresin, Influence of source parameters on the growth of metal nanoparticles by sputter-gas-aggregation. Applied Nanoscience 7, 875 (2017)

    Article  ADS  Google Scholar 

  34. M. Salavati-Niasari, F. Davar, M.R. Loghman-Estarki, Controllable synthesis of thioglycolic acid capped ZnS(Pn)0.5 nanotubes via simple aqueous solution route at low temperatures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloys Compd. 494, 199–204 (2010)

    Article  Google Scholar 

  35. S.P. Schwaminger, D. Bauer, P. Fraga-García, F.E. Wagner, S. Berensmeier, Oxidation of magnetite nanoparticles: impact on surface and crystal properties. Cryst. Eng. Comm 19, 246 (2017)

    Article  Google Scholar 

  36. R.L. Rebodos, P.J. Vikesland, Effects of oxidation on the magnetization of nanoparticulate magnetite. Langmuir 26, 16745 (2010)

    Article  Google Scholar 

  37. J. Bansmann, S.H. Baker, C. Binns, J.A. Blackman, J.-P. Bucher, J. Dorantes-Davila, V. Dupuis, L. Favre, D. Kechrakos, A. Kleibert, K.-H. Meiwes-Broer, G.M. Pastore, A. Perez, O. Toulemonde, K.N. Trohidou, J. Tuaillon, Y. Xie, Magnetic and structural properties of isolated and assembled clusters. Surf. Sci. Rep. 56, 189–275 (2005)

    Article  ADS  Google Scholar 

  38. K. Edmonds, C. Binns, S.H. Baker, M.J. Maher, S.C. Thornton, O. Tjernberg, N.B. Brookes, Size dependence of the magnetic moments of exposed nanoscale iron particles. J. Magn. Magn. Mater. 231, 113 (2001)

    Article  ADS  Google Scholar 

  39. J. Bansmann, A. Kleibert, Magnetism of mass-filtered nanoparticles on ferromagnetic supports. Appl. Phys. A 80, 1 (2005)

    Article  Google Scholar 

  40. Y. Vitta, V. Piscitelli, A. Fernandez, F. Gonzalez-Jimenez, J. Castillo, α-Fe nanoparticles produced by laser ablation: optical and magnetic properties. Chem. Phys. Lett. 512, 96–98 (2011)

    Article  ADS  Google Scholar 

  41. K. Simeonidis, S. Mourdikoudis, I. Tsiaoudis, N. Frangis, M. Agleskeris, O. Kalogieou, A. Delimitis, C. Dendrinou-Samara, Oxidation process of Fe nanoparticles. Mod. Phys. Lett. B 21(18), 1143–1151 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Dawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawi, E.A., Ismail, A.H., AbdelKader, A. et al. Sputtering of size-tunable oxidized Fe nanoparticles by gas flow method. Appl. Phys. A 126, 316 (2020). https://doi.org/10.1007/s00339-020-03498-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03498-2

Keywords

Navigation