Skip to main content
Log in

Effect of temperature on the magnetic properties of strontium hexaferrite synthesized by the Pechini method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, strontium hexaferrite powders were synthesized by the polymeric complex method (Pechini). The as-prepared samples were calcined at temperatures of 800 °C, 850 °C, 900 °C, 1000 °C, and 1050 °C for 1 h. In addition, the presence of a secondary phase of hematite (α-Fe2O3) was detected in all samples. The influence of calcination temperature and synthesis technique to control grain growth and size was analyzed. The crystalline phases, structure and morphology of the samples were determined by X-ray diffraction, scanning electron microscope and transmission electron microscopy. While the magnetic properties were measured at room temperature using a vibrating sample magnetometer with an applied field of up to 20 KOe. The results show that the sample calcined at 900 °C with a crystal size of 245 nm exhibits the best magnetic properties of the entire series, obtaining the highest values of magnetization by saturation and coercivity (Ms 99.3 emu/g, and Hc 6.15 kOe). This can be attributed to the exchange coupling interactions between the soft and hard phases of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  2. K.S. Martirosyan, E. Galstyan, S.M. Hossain, Y.J. Wang, D. Litvinov, Barium hexaferrite nanoparticles: synthesis and magnetic properties. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 176, 8–13 (2011). https://doi.org/10.1016/j.mseb.2010.08.005

    Article  Google Scholar 

  3. G.L. Tan, W. Li, Ferroelectricity and ferromagnetism of M-type lead hexaferrite. J. Am. Ceram. Soc. (2015). https://doi.org/10.1111/jace.13530

    Article  Google Scholar 

  4. D. Shekhawat, A.K. Singh, P.K. Roy, Structural and electro-magnetic properties of high (BH)max La–Sm substituted Sr-hexaferrite for brushless DC electric motors application. J. Mol. Struct. 1179, 787–794 (2019). https://doi.org/10.1016/j.molstruc.2018.11.083

    Article  ADS  Google Scholar 

  5. N.M. Ferreira, F.M. Costa, A.V. Kovalevsky, M.A. Madre, M.A. Torres, J.C. Diez, A. Sotelo, New environmentally friendly Ba–Fe–O thermoelectric material by flexible laser floating zone processing. Scripta Mater. 145, 54–57 (2018). https://doi.org/10.1016/j.scriptamat.2017.10.011

    Article  Google Scholar 

  6. C. Valero-Luna, S.A. Palomares-Sanchéz, F. Ruíz, Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today 266, 110–119 (2016). https://doi.org/10.1016/j.cattod.2015.08.049

    Article  Google Scholar 

  7. M. Liu, A. Iizuka, E. Shibata, Acid mine drainage sludge as an alternative raw material for M-type hexaferrite preparation. J. Clean. Prod. 224, 284–291 (2019). https://doi.org/10.1016/j.jclepro.2019.03.224

    Article  Google Scholar 

  8. J.E.V. de Morais, R.G.M. Oliveira, M.A.S. Silva, M.M. Costa, A.J.M. Sales, V.L. Bessa, A.R. Rodrigues, I.F. Vasconcelos, J. Goldsmith, T.K. Carroll, A.S.B. Sombra, Magneto-dielectric properties studies of the matrix [SrFe12O19(SFO)1 X–BiFeO3(BFO)X]. J. Alloys Compd. 735, 2111–2118 (2018). https://doi.org/10.1016/j.jallcom.2017.11.116

    Article  Google Scholar 

  9. M. Abdellahi, A. Najfinezhad, S. Saber-Samanadari, A. Khandan, H. Ghayour, Zn and Zr co-doped M-type strontium hexaferrite: synthesis, characterization and hyperthermia application. Chin. J. Phys. 56, 331–339 (2018). https://doi.org/10.1016/J.CJPH.2017.11.016

    Article  Google Scholar 

  10. A. Najafinezhad, H. Ghayour, M. Abdellahi, A. Khandan, S. Saber-Samandari, Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications. J. Alloys Compd. 734, 290–300 (2017). https://doi.org/10.1016/j.jallcom.2017.10.138

    Article  Google Scholar 

  11. P. Křišan, O. Hondlík, H. Štěpánková, V. Chlan, K. Kouřil, R. Rezníček, E. Pollert, P. Veverka, Nuclear magnetic resonance in hexaferrite/maghemite composite nanoparticles. Acta Phys. Pol. A 127, 514–516 (2015). https://doi.org/10.12693/APhysPolA.127.514

    Article  Google Scholar 

  12. V. Barrera, I. Betancourt, Hard magnetic properties of nanosized Sr(Fe,Al)12O19 hexaferrites obtained by Pechini method. J. Phys. Chem. Solids 93, 1–6 (2016). https://doi.org/10.1016/j.jpcs.2016.02.007

    Article  ADS  Google Scholar 

  13. Y. Yang, D. Huang, F. Wang, J. Shao, An investigation on microstructural, spectral and magnetic properties of Pr–Cu double-substituted M-type Ba–Sr hexaferrites. Chin. J. Phys. 57, 250–260 (2019). https://doi.org/10.1016/j.cjph.2018.11.012

    Article  Google Scholar 

  14. C. Liu, X. Kan, F. Hu, X. Liu, S. Feng, J. Hu, W. Wang, K.M. Ur Rehman, M. Shezad, C. Zhang, H. Li, S. Zhou, Q. Wu, Characterizations of magnetic transition behavior and electromagnetic properties of Co–Ti co-substituted SrM-based hexaferrites SrCoxTixFe12–2 xO19 compounds. J. Alloys Compd. 784, 1175–1186 (2019). https://doi.org/10.1016/j.jallcom.2019.01.112

    Article  Google Scholar 

  15. M.A. Almessiere, Y. Slimani, M. Sertkol, M. Nawaz, A. Baykal, I. Ercan, The impact of Zr substituted Sr hexaferrite: investigation on structure, optic and magnetic properties. Results Phys. 13, 102244 (2019). https://doi.org/10.1016/j.rinp.2019.102244

    Article  Google Scholar 

  16. M.A. Almessiere, Y. Slimani, A. Baykal, Structural and magnetic properties of Ce-doped strontium hexaferrite. Ceram. Int. 44, 9000–9008 (2018). https://doi.org/10.1016/j.ceramint.2018.02.101

    Article  Google Scholar 

  17. M.A. Almessiere, Y. Slimani, H. Gungunes, A. Manikandan, A. Baykal, Investigation of the effects of Tm3+ on the structural, microstructural, optical, and magnetic properties of Sr hexaferrites. Results Phys. 13, 102166 (2019). https://doi.org/10.1016/j.rinp.2019.102166

    Article  Google Scholar 

  18. M.A. Almessiere, Y. Slimani, A. Baykal, Impact of Nd–Zn co-substitution on microstructure and magnetic properties of SrFe12O19 nanohexaferrite. Ceram. Int. 45, 963–969 (2019). https://doi.org/10.1016/j.ceramint.2018.09.272

    Article  Google Scholar 

  19. T.J. Pérez-Juache, I. Betancourt, S.A. Palomares-Sánchez, M. Mirabal García, J.A. Matutes-Aquino, A.L. Guerrero-Serrano, Study of microstructure and magnetic properties of SrM hexaferrites with neodymium oxide. J. Supercond. Nov. Magn. 24, 2325–2329 (2011). https://doi.org/10.1007/s10948-011-1193-6

    Article  Google Scholar 

  20. A.M. Gabay, G.C. Hadjipanayis, ThMn12-type structure and uniaxial magnetic anisotropy in ZrFe10Si2 and Zr1 xCexFe10Si2 alloys. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.10.073

    Article  Google Scholar 

  21. T. Kikuchi, T. Nakamura, T. Yamasaki, M. Nakanishi, T. Fujii, J. Takada, Y. Ikeda, Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method. J. Magn. Magn. Mater. 322, 2381–2385 (2010). https://doi.org/10.1016/j.jmmm.2010.02.041

    Article  ADS  Google Scholar 

  22. M.N. Ashiq, M.J. Iqbal, M. Najam-Ul-Haq, P. Hernandez Gomez, A.M. Qureshi, Synthesis, magnetic and dielectric properties of ErNi doped Sr-hexaferrite nanomaterials for applications in high density recording media and microwave devices. J. Magn. Magn. Mater. (2012). https://doi.org/10.1016/j.jmmm.2011.07.016

    Article  Google Scholar 

  23. L. Lechevallier, J.M. Le Breton, Substitution effects in M-type hexaferrite powders investigated by Mössbauer spectrometry. J. Magn. Magn. Mater. 290–291, 1237–1239 (2005). https://doi.org/10.1016/j.jmmm.2004.11.411

    Article  ADS  Google Scholar 

  24. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, D.V. Karpinsky, Effect of gallium doping on electromagnetic properties of barium hexaferrite. J. Phys. Chem. Solids 111, 142–152 (2017). https://doi.org/10.1016/j.jpcs.2017.07.014

    Article  ADS  Google Scholar 

  25. Y. Li, Q. Wang, H. Yang, Synthesis, characterization and magnetic properties on nanocrystalline BaFe12O19 ferrite. Curr Appl Phys 9, 1375–1380 (2009). https://doi.org/10.1016/j.cap.2009.03.002

    Article  ADS  Google Scholar 

  26. M.P. Pechini, Method of preparing idead and alkaline earth titanates and niobates and coating method using the same, United States Patent Office. 3,330,697 (1967)

  27. D.A. Vinnik, D.S. Klygach, V.E. Zhivulin, A.I. Malkin, M.G. Vakhitov, S.A. Gudkova, D.M. Galimov, D.A. Zherebtsov, E.A. Trofimov, N.S. Knyazev, V.V. Atuchin, S.V. Trukhanov, A.V. Trukhanov, Electromagnetic properties of BaFe12O19:Ti at centimeter wavelengths. J. Alloys Compd. 755, 177–183 (2018). https://doi.org/10.1016/j.jallcom.2018.04.315

    Article  Google Scholar 

  28. Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008). https://doi.org/10.1016/j.jmmm.2008.06.009

    Article  ADS  Google Scholar 

  29. L. Rezlescu, E. Rezlescu, P.D. Popa, N. Rezlescu, Fine barium hexaferrite powder prepared by the crystallisation of glass. J. Magn. Magn. Mater. 193, 288–290 (1999). https://doi.org/10.1016/S0304-8853(98)00442-9

    Article  ADS  Google Scholar 

  30. J. Wang, C. Ponton, R. Grössinger, I. Harris, A study of La-substituted strontium hexaferrite by hydrothermal synthesis. J. Alloys Compd. 369, 170–177 (2003). https://doi.org/10.1016/j.jallcom.2003.09.097

    Article  Google Scholar 

  31. M. Awawdeh, I. Bsoul, S.H. Mahmood, Magnetic properties and Mössbauer spectroscopy on Ga, Al, and Cr substituted hexaferrites. J. Alloys Compd. 585, 465–473 (2014). https://doi.org/10.1016/j.jallcom.2013.09.174

    Article  Google Scholar 

  32. M.A. Almessiere, Y. Slimani, N.A. Tashkandi, A. Baykal, M.F. Saraç, A.V. Trukhanov, I. Ercan, I. Belenli, B. Ozçelik, The effect of Nb substitution on magnetic properties of BaFe12O19 nanohexaferrites. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.10.048

    Article  Google Scholar 

  33. J. Yu, S. Tang, L. Zhai, Y. Shi, Y. Du, Synthesis and magnetic properties of single-crystalline BaFe12O19 nanoparticles. Phys. B 404, 4253–4256 (2009). https://doi.org/10.1016/j.physb.2009.08.043

    Article  ADS  Google Scholar 

  34. Organizacion Mundial del, Comercio, OMC (2012). https://www.wto.org/spanish/tratop_s/dispu_s/cases_s/ds431_s.htm. Accessed 4 Feb 2019.

  35. J. Cui, M. Kramer, L. Zhou, F. Liu, A. Gabay, G. Hadjipanayis, B. Balasubramanian, D. Sellmyer, Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 158, 118–137 (2018). https://doi.org/10.1016/j.actamat.2018.07.049

    Article  Google Scholar 

  36. J. Park, Y.-K. Hong, S.-G. Kim, S. Kim, L.S.I. Liyanage, J. Lee, W. Lee, G.S. Abo, K.-H. Hur, S.-Y. An, Maximum energy product at elevated temperatures for hexagonal strontium ferrite (SrFe12O19) magnet. J. Magn. Magn. Mater. 355, 1–6 (2014). https://doi.org/10.1016/j.jmmm.2013.11.032

    Article  ADS  Google Scholar 

  37. L.V. Kozhitov, A.N. Kovalev, L.V. Panina, A.V. Timofeev, V.G. Kostishyn, Synthesis and multiferroic properties of M-type SrFe12O19 hexaferrite ceramics. J. Alloys Compd. 645, 297–300 (2015). https://doi.org/10.1016/j.jallcom.2015.05.024

    Article  Google Scholar 

  38. A.E. Ramírez, N.J. Solarte, L.H. Singh, S. Gaona, Investigation of the magnetic properties of SrFe12O19 synthesized by the Pechini and combustion methods. J. Magn. Magn. Mater. 438, 100–106 (2017). https://doi.org/10.1016/j.jmmm.2017.04.042

    Article  ADS  Google Scholar 

  39. L.V. Kozhitov, L.V. Panina, A.K. Zyuzin, A.V. Timofeev, A.N. Kovalev, V.G. Kostishyn, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19. J. Magn. Magn. Mater. 400, 327–332 (2015). https://doi.org/10.1016/j.jmmm.2015.09.011

    Article  ADS  Google Scholar 

  40. L. Lutterotti, M. Bortolotti, G. Ischia, I. Lonardelli, H.R. Wenk, Rietveld texture analysis from diffraction images. Zeitschrift Fur Kristallographie Supplement 1, 125–130 (2007)

    Article  Google Scholar 

  41. L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, P. Scardi, Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999). https://doi.org/10.1107/S0021889898009856

    Article  Google Scholar 

  42. S.K. Rakshit, S.C. Parida, S. Dash, Z. Singh, R. Prasad, V. Venugopal, Thermochemical studies on SrFe12O19(s). Mater. Res. Bull. 40, 323–332 (2005). https://doi.org/10.1016/j.materresbull.2004.10.015

    Article  Google Scholar 

  43. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. Hoboken, NJ: Wiley (2009). https://doi.org/10.1016/S1369-7021(09)70091-4.

  44. H. Luo, B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324, 2602–2608 (2012). https://doi.org/10.1016/J.JMMM.2012.02.106

    Article  ADS  Google Scholar 

  45. A. Davoodi, B. Hashemi, Investigation of the effective parameters on the synthesis of strontium hexaferrite nanoparticles by chemical coprecipitation method. J. Alloys Compd. 512, 179–184 (2012). https://doi.org/10.1016/j.jallcom.2011.09.059

    Article  Google Scholar 

  46. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 240, 599–642 (1948). https://doi.org/10.1098/rsta.1948.0007

    Article  ADS  MATH  Google Scholar 

  47. R.W. Gao, W.C. Feng, H.Q. Liu, B. Wang, W. Chen, G.B. Han, P. Zhang, H. Li, W. Li, Y.Q. Guo, W. Pan, X.M. Li, M.G. Zhu, X. Li, Exchange-coupling interaction, effective anisotropy and coercivity in nanocomposite permanent materials. J. Appl. Phys. 94, 664–668 (2003). https://doi.org/10.1063/1.1581380

    Article  ADS  Google Scholar 

  48. Y.F. Xu, Y.Q. Ma, S.T. Xu, F.L. Zan, G.H. Zheng, Z.X. Dai, Effects of vacancy and exchange-coupling between grains on magnetic properties of SrFe12O19 and α-Fe2O3 composites. Mater. Res. Bull. 57, 13–18 (2014). https://doi.org/10.1016/j.materresbull.2014.05.017

    Article  Google Scholar 

  49. S. Manjura Hoque, C. Srivastava, V. Kumar, N. Venkatesh, H.N. Das, D.K. Saha, K. Chattopadhyay, Exchange-spring mechanism of soft and hard ferrite nanocomposites. Mater Res Bull 48, 2871–2877 (2013). https://doi.org/10.1016/j.materresbull.2013.04.009

    Article  Google Scholar 

  50. S.M.A. Radmanesh, S.A. Seyyed Ebrahimi, Examination the grain size dependence of exchange coupling in oxide-based SrFe12O19/Ni0.7Zn0.3Fe2O4 nanocomposites. J. Supercond. Novel Magn. (2013). https://doi.org/10.1007/s10948-012-1819-3

    Article  Google Scholar 

  51. J.M.D. Coey, Magn. Magn. Mater. (2010). https://doi.org/10.1017/CBO9780511845000

    Article  Google Scholar 

  52. H.Z. Wang, Y.N. Hai, B. Yao, Y. Xu, L. Shan, L. Xu, J.L. Tang, Q.H. Wang, Tailoring structure and magnetic characteristics of strontium hexaferrite via Al doping engineering. J. Magn. Magn. Mater. 422, 204–208 (2017). https://doi.org/10.1016/J.JMMM.2016.08.066

    Article  ADS  Google Scholar 

  53. H. Sato, T. Umeda, Grain growth of strontium ferrite crystallized from amorphous phases. Mater. Trans. JIM 34, 76–81 (1993). https://doi.org/10.2320/matertrans1989.34.76

    Article  ADS  Google Scholar 

  54. H. Kronmüller, M. Fähnle, Micromagnetism and the Microstructure of Ferromagnetic Solids, 1st edn. Cambridge: Cambridge University Press (2003)

    Google Scholar 

Download references

Acknowledgements

M. A. Urbano-Peña thanks CONACYT (México) for her scholar-grant 486841. Authors also thank Ing. Arturo Martinez (UNAM), Ing. Jorge Barreto (UNAM) and Dr. John Eder Sanchez (Ciacyt-UASLP) for their lab assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Urbano-Peña.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbano-Peña, M.A., Palomares-Sánchez, S.A., Betancourt, I. et al. Effect of temperature on the magnetic properties of strontium hexaferrite synthesized by the Pechini method. Appl. Phys. A 125, 711 (2019). https://doi.org/10.1007/s00339-019-3004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3004-z

Navigation