Skip to main content
Log in

Studies of dielectric relaxation and impedance analysis of new electronic material: (Sb1/2Na1/2)(Fe2/3Mo1/3)O3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new polycrystalline ceramic sample of (Sb1/2Na1/2)(Fe2/3Mo1/3)O3 is formed by cheap mixed oxide processing technique. The mass loss and the calcination temperature of the sample are optimized by thermogravimetric analysis and repeated firing. The formed sample crystallizes in the orthorhombic crystal structure at room temperature depicted from the X-ray diffraction spectra. The dielectric relaxation, impedance and modulus analysis of the sample have been analyzed in various temperature and frequency range. The dielectric parameters of the sample depend on frequency and temperature and with an increment in temperature the relaxation time falls. Impedance spectroscopy analysis predicts the association of grain and grain boundary resistance. The short and long-range mobility of the charge carriers are illustrated by the modulus plot. Ac conductivity is seen to be temperature and frequency dependent and hopping of the charge carriers is also observed at high temperature. Further, the universal power law is followed by ac conductivity mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015)

    Article  ADS  Google Scholar 

  2. R.A.P. Ribeiro, L.H.S. Lacerda, E. Longo, J. Andrés, S.R. de Lazaro, J. Magn. Magn. Mater. 475, 544–549 (2019)

    Article  ADS  Google Scholar 

  3. H.W.Y. Piaojie Xue, X. Lu, Zhu, J. Mater. Sci. Technol. 34, 914–930 (2018)

    Article  Google Scholar 

  4. N.V. Minh, N.G. Quan, J. Alloys Compd. 509, 2663 (2011)

    Article  Google Scholar 

  5. W. Mao, X. Li, Y. Li, X. Wang, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, Mater. Lett 97, 56 (2013)

    Article  Google Scholar 

  6. V.S. Puli, A. Kumar, N. Panwar, I.C. Panwar, R.S. Katiyar, J. Alloys. Compd. 509, 8223 (2011)

    Article  Google Scholar 

  7. A. Scrimshire, A. Lobera, A.M.T. Bell, A.H. Jones, I. Sterianou, S.D. Forder, P.A. Bingham, J. Phys. Condens. Matter. 30, 105704 (2018)

    Article  ADS  Google Scholar 

  8. N. Ramu, K. Meera, R. Ranjith, R. Muralidharan, Mater. Res. Express 6, 036106 (2019)

    Article  ADS  Google Scholar 

  9. Z.-Q. Wang, Y.-S. Lan, Z.-Y. Zeng, X.-R. Chen, Q.-F. Chen, Solid State Commun. 288, 10–17 (2019)

    Article  ADS  Google Scholar 

  10. G.B. Zhang, Y.X. Wang, F.Z. Ren, Y.L. Yan, J. Phys. Soc. Jpn. 81, 074702 (2012)

    Article  ADS  Google Scholar 

  11. C.X. Lu, J.Y. Chu, Y.C. Zhai, Y.W. Tian, J. Harbin Inst. Technol. 36, 10 (2004)

    Google Scholar 

  12. S.K. Bera, S.K. Barik, R.N.P. Choudhary, P.K. Bajpai, Bull. Mater. Sci. 35, 47 (2012)

    Article  Google Scholar 

  13. S. Thakur, O.P. Pandey, K. Singh, Ceram. Int. 40, 16371 (2014)

    Article  Google Scholar 

  14. S. Ahmed, S.K. Barik, J. Alloys. Compd. 626, 292 (2015)

    Article  Google Scholar 

  15. J.M. Luiz, J.R. Matos, I. Giolito, M. Ionashiro, Thermochim. Acta 254, 209 (1995)

    Article  Google Scholar 

  16. E. Wu, J. Appl. Cryst. 22, 506–510 (1989)

    Article  Google Scholar 

  17. K. He, N. Chen, C. Wang, L. Wei, J. Chen, Cryst. Res. Technol. 53, 1700157 (2018)

    Article  Google Scholar 

  18. V.M. Goldschmidt, Die Geseze der Krystallochemie, Naturwissenschaften 14, 477 (1926)

    Article  ADS  Google Scholar 

  19. K. Parida, R.N.P. Choudhary, Mater. Res. Express 4, 076302 (2017)

    Article  ADS  Google Scholar 

  20. T. Md, M. Rahman, C.V. Vargas, Ramana, J. Alloy. Compd. 617, 547–562 (2014)

    Article  Google Scholar 

  21. K. Parida, S.K. Dehury, R.N.P. Choudhary, Phys. Lett. A 380, 4083–4091 (2016)

    Article  ADS  Google Scholar 

  22. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  23. S. Nath, S.K. Barik, S. Hajra, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 12251–12257 (2018)

    Article  Google Scholar 

  24. H.O. Rodrigues, G.F.M. Pires Jr., J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, J. Phys. Chem. Solids 71, 1329 (2010)

    Article  ADS  Google Scholar 

  25. Y.K. Jun, W.T. Moon, C.M. Chang, H.S. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S.H. Hong, Solid State Comm. 135, 133 (2005)

    Article  ADS  Google Scholar 

  26. S. Pattanayak, R.N.P. Choudhary, P.R. Das, J. Mater. Sci. Mater. Electron. 24, 2767 (2013)

    Article  Google Scholar 

  27. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Magn. Magn. Mater. 355, 259 (2014)

    Article  ADS  Google Scholar 

  28. X.J. Xi, S.Y. Wang, W.F. Liu, H.J. Wang, F. Guo, X. Wang, J. Gao, D.J. Li, J. Alloys. Compd. 603, 224 (2014)

    Article  Google Scholar 

  29. Y.A. Chaudhari, A. Singh, C.M. Mahajan, P.P. Jagtap, E.M. Abuassaj, R. Chatterjee, S.T. Bendre, J. Magn. Magn. Mater. 347, 153 (2013)

    Article  ADS  Google Scholar 

  30. J. Mohanty, P. Behera, S.R. Mishra, T. Badapanda, S. Anwar, I.O.P. Conf. Ser. Mater. Sci. Eng. 178, 012014 (2017)

    Article  Google Scholar 

  31. B. Pati, R.N.P. Choudhary, P.R. Das, Ceram. Int. 40, 2201 (2014)

    Article  Google Scholar 

  32. A. Kumar, R.N.P. Choudhary, B.P. Singh, A.K. Thakur, Ceram. Int. 32, 73 (2006)

    Article  Google Scholar 

  33. V. Purohit, R. Padhee, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 5224–5232 (2018)

    Article  Google Scholar 

  34. S.K. Barik, R.N.P. Choudhary, P.K. Mahapatra, J. Alloys. Compd. 459, 35 (2008)

    Article  Google Scholar 

  35. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, J. Appl. Phys. 106, 024102 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank AICTE for sanctioning the project [no.: 8023/RID/RPS-32/(POLICY-III)(NER)/2011-12] for experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Kumar Barik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, S.K., Ahmed, S. & Hajra, S. Studies of dielectric relaxation and impedance analysis of new electronic material: (Sb1/2Na1/2)(Fe2/3Mo1/3)O3. Appl. Phys. A 125, 200 (2019). https://doi.org/10.1007/s00339-019-2496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2496-x

Navigation