Skip to main content
Log in

Electrical characteristics and conduction mechanism of microwave-sintered (Ba0.8Sr0.2)(Zr0.1Ti0.8Ce0.1)O3 electronic ceramics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper presents the fabrication and electrical characterization of a lead-free polycrystalline complex electronic material Ba0.8Sr0.2(Zr0.1Ti0.8Ce0.1)O3 (abbreviated as BSZTCO) using standard experimental techniques. The phase identification of the material, determined using X-ray diffraction data, depicts the formation of a multi-phase system. The various electrical parameters were obtained at different frequencies (102–106 Hz) and temperatures (20–500 °C) using the phase-sensitive meter and found interesting results. Study of the micrograph of natural surfaces of the sample suggests that the ceramic sample has been formed with high density grain growth (without any cracks or voids). The transport properties and dielectric relaxation characteristics of the material have been studied using modulus and impedance spectroscopy techniques. Temperature dependence of conduction behavior (Nyquist plot) confirms the presence of bulk and grain boundary effects in the material. The charge transfer by hopping dominates the electrical transport process of the material as revealed from conductivity analysis. The dielectric relaxation of the material is studied using a complex modulus spectrum depicting non-Debye type relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K G Ewsuk and G L Messing J. Mater. Sci.19 1530 (1984)

    Article  ADS  Google Scholar 

  2. J Gao, D Xue, W Liu, C Zhou and X Ren Actuators6 24 (2017)

    Article  Google Scholar 

  3. J H Hwang and Y H Han J. Am. Ceram. Soc.84 1750 (2001)

    Article  Google Scholar 

  4. R Kumar, K Asokan, S Patnaik and B Birajdar AIP Conference Proceedings1731 p 030025 (2016)

  5. K-T Kim and C-I Kim Surf. Coat. Technol.200 4708 (2006)

    Article  Google Scholar 

  6. Y Hoshi, P H Xiang, H Takeda, T Nishida, K Uchiyama and T Shiosaki, Sixteenth IEEE International Symposium on the Applications of Ferroelectrics, Nara, p 823 (2007)

  7. T Takeuchi and H Kageyama J. Mater. Res.18 1809 (2003)

    Article  ADS  Google Scholar 

  8. W Liu and X Ren Phys. Rev. Lett.103 257602 (2009)

    Article  ADS  Google Scholar 

  9. N. Pradhani, P K Mahapatra and R N P Choudhary, J. Phys. Mater.1 015007 (2018)

    Article  Google Scholar 

  10. M Chen, Q Xu, B H Kim, B K Ahn and W. Chen, Mater. Res. Bull.43 1420 (2008)

    Article  Google Scholar 

  11. Q C Sun, C M Lu and H Zhou Rare Met.24 235(2005)

    Google Scholar 

  12. J Zhua, L Xiao, T Ding, Y Wang and Y Fan J. Appl. Phys.118 115305 (2015)

    Article  ADS  Google Scholar 

  13. V Bijalwan, P Tofel and V Holcman J. Asian Ceram. Soc. (2018). https://doi.org/10.1080/21870764.2018.1539211

    Article  Google Scholar 

  14. W Mao, W Chen, X Wang, Y Zhu, Y Maa, H Xue, L Chu, J Yang, X Li and W Huang Ceram. Int.42 12838 (2016)

    Article  Google Scholar 

  15. L. Keller (Fargo: North Dakota State University) (1982)

  16. J Joseph, T M Vimala, J Raju and V R K Murthy J. Phys. D Appl. Phys.32 1049 (1999)

    Article  ADS  Google Scholar 

  17. D Grier, G. McCarthy (Fargo: North Dakota State University) (1991)

  18. B Behera, P Nayak and R N P Choudhary Mater. Res. Bull.43 401(2008)

    Article  Google Scholar 

  19. S Hajra, S Sahoo, T Mishra, M De, P K Rout and R N P Choudhary J. Mater Sci Mater. Electron.29 7876 (2018)

    Google Scholar 

  20. S Nath, S K Barick, S Hajra and R N P Choudhary J. Mater. Sci. Mater. Electron.29 12251 (2018)

    Google Scholar 

  21. A A Bokov and Z G Ye J. Mater. Sci.41 31 (2006)

    Article  ADS  Google Scholar 

  22. S Sen, R N P Choudhary, A Tarafdar and P Pramanik J. Appl. Phys.99 124114 (2006)

    Article  ADS  Google Scholar 

  23. V Purohit, R Padhee and R N P Choudhary J. Mater. Sci. Mater. Electron.29 5224 (2018)

    Google Scholar 

  24. K Schwarzburg and F Willig J. Phys. Chem. B107 3552 (2003)

    Article  Google Scholar 

  25. C Li and X Wei J. Mater. Sci.47 4200 (2012)

    Article  ADS  Google Scholar 

  26. S Hajra, A Tripathy, B K Panigrahi and RNP Choudhary, Mater. Res. Express6 076304 (2019)

    Article  ADS  Google Scholar 

  27. H Yang, F Yan, Ge Zhang, Y Lin and F Wang J. Alloys Compds.720 116 (2017)

    Article  Google Scholar 

  28. M Sahu, S Pradhan, S Hajra, B K Panigrahi and R N P Choudhary Appl. Phys. A 123 183 (2019)

    Article  Google Scholar 

  29. F A Kroger and H J Vink J. Phys. Chem. Solids5 208 (1958)

    Article  ADS  Google Scholar 

  30. N Hirose and A R West J Am Ceram Soc79 1633 (1996)

    Article  Google Scholar 

  31. J S Kim J. Phys. Soc. Jpn.70 3129 (2001)

    Article  ADS  Google Scholar 

  32. J Ross Macdonald Solid State Ion.13 147 (1984)

    Article  Google Scholar 

  33. M A L Nobre and S J Langfredi J Phys Chem Solids62 1999 (2001)

    Article  ADS  Google Scholar 

  34. J D Bobic, R M Katiliute, M Ivanov, M M V Petrovic, N I Ilic, A S Džunuzovic, J Banys and B D Stojanovic J. Mater. Sci.27 2448 (2016)

    Google Scholar 

  35. S R Elliot Philos Magn36 1291 (1977)

    Article  ADS  Google Scholar 

  36. A Ghosh Phys Rev B42 1388 (1990)

    Article  ADS  Google Scholar 

  37. T M Meaz, S M Attia and A M Abo El Ata J. Magn. Magn. Mater.257 296 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors like to give their sincere gratitude to Prof. (Dr.) K.L Yadav, IIT Roorkee, for helping us in SEM experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manisha Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajra, S., Purohit, V., Sahu, M. et al. Electrical characteristics and conduction mechanism of microwave-sintered (Ba0.8Sr0.2)(Zr0.1Ti0.8Ce0.1)O3 electronic ceramics. Indian J Phys 94, 175–182 (2020). https://doi.org/10.1007/s12648-019-01471-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01471-1

Keywords

PACs Nos.

Navigation