Skip to main content
Log in

Tunnel current model of asymmetric MIM structure levying various image forces to analyze the characteristics of filamentary memristor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electro-formation in metal insulator metal (MIM) structure causes the emergence of the conductive filament and also leaves a tiny insulating gap amid upper electrode and conductive filament. Since the material property of conductive filament is unlike that of the upper electrode, it is vital to consider these dissimilarities of electrodes in tunneling phenomena. In this paper, the trapezoidal potential barrier of an insulating film sandwiched between two dissimilar electrodes (asymmetric MIM) is accounted for and superimposed with triangular, parabolic and rectangular image force potentials, to derive the corresponding mean barrier heights. Then, the impact of the insulating film thickness, metal’s work function difference, and the dielectric constant of the insulating film on tunneling current density are investigated, employing the same mean barrier potential. Finally, the obtained results are implemented in conductive filament-based memristor model to analyze its physical behavior through pinched hysteresis IV characteristics. It is ascertained that symmetric results are obtained in forward and reverse biased conditions. The incorporation of triangular image potential suppresses the barrier foremost, whereas parabolic image potential (PIP) has moderate effects on barrier lowering and rectangular image potential exhibits least lowering of the potential barrier, which renders minimum current. The switching dynamics of memristor apprises that PIP manifests only 0.5% deviation with experimental results in OFF switching and also shows good agreement in ON switching. The design is endorsed by comparing the outcomes with experimental and simulated data. This model enables reconfigurable and neuromorphic computing applications of the memristor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013)

    Article  ADS  Google Scholar 

  2. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  3. J. Singh, B. Raj, Comparative analysis of memristor model for memories design. J. Semicond. IOP Sci. 39(7), 1–12 (2018)

    Google Scholar 

  4. L. Gao, F. Alibart, D.B. Strukov, Programmable CMOS/memristor threshold logic. IEEE Trans. Nanotechnol. 12(2), 115–119 (2013)

    Article  ADS  Google Scholar 

  5. C. Liu, Q. Yang, C. Zhang, H. Jiang, Q. Wu, H.H. Li, A memristor-based neuromorphic engine with a current sensing scheme for artificial neural network applications, in Design Automation Conference (ASP-DAC), 2017 22nd Asia and South Pacific (IEEE, 2017), pp. 647–652

  6. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  7. L. Chua, Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)

    Article  ADS  Google Scholar 

  8. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  ADS  Google Scholar 

  9. D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  10. D.B. Strukov, R. Stanley Williams, Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94(3), 515–519 (2009)

    Article  ADS  Google Scholar 

  11. D. Biolek, V. Biolkova, Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    Google Scholar 

  12. T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. Electron Devices IEEE Trans. 58(9), 3099–3105 (2011)

    Article  ADS  Google Scholar 

  13. J. Zha, H. Huang, Y. Liu, A novel window function for memristor model with application in programming analog circuits. IEEE Trans. Circuits Syst. II Express Briefs 63(5), 423–427 (2016)

    Article  Google Scholar 

  14. M.D. Pickett, D.B. Strukov, J.L. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in titanium dioxide memristive devices. J. Appl. Phys. 106(7), 1–6 (2009)

    Article  Google Scholar 

  15. H. Abdalla, M.D. Pickett, SPICE modeling of memristors, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS) (2011)

  16. S. Kvatinsky, E.G. Friedman, A. Kolodny, C. Uri, Weiser, TEAM: ThrEshold adaptive memristor model. Circuits Syst. I Regul. Pap. IEEE Trans. 60(1), 211–221 (2013)

    Article  MathSciNet  Google Scholar 

  17. A.M. Hassan, H.A.H. Fahmy, N.H. Rafat, Enhanced model of conductive filament-based memristor via including trapezoidal electron tunneling barrier effect. IEEE Trans. Nanotechnol. 15(3), 484–491 (2016)

    Article  ADS  Google Scholar 

  18. J. Borghetti, D.B. Strukov, M.D. Pickett, J.J. Yang, D.R. Stewart, R.S. Williams, Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106(12), 124504 (2009)

    Article  ADS  Google Scholar 

  19. J.G. Simmons, Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film. J. Appl. Phys. 34(6), 1793–1803 (1963)

    Article  ADS  Google Scholar 

  20. J.G. Simmons, Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34(9), 2581–2590 (1963)

    Article  ADS  Google Scholar 

  21. J. Singh, B. Raj, Modeling of mean barrier height levying various image forces of metal insulator metal structure to enhance the performance of conductive filament based memristor model. IEEE Trans. Nanotechnol. 17(2), 268–275 (2018)

    Article  ADS  Google Scholar 

  22. A. Sommerfeld, H. Bethe, Handbuch der Physik von Geiger und Scheel, vol 24(2) (Verlag, Julius Springer, Berlin, 1933), p. 405f

    Google Scholar 

  23. R. Holm, The electric tunnel effect across thin insulator films in contacts. J. Appl. Phys. 22(5), 569–574 (1951)

    Article  ADS  Google Scholar 

  24. R. Stratton, Volt–current characteristics for tunneling through insulating films. J. Phys. Chem. Solids 23(9), 1177–1190 (1962)

    Article  ADS  Google Scholar 

  25. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn (Wiley-Interscience, New York, 2006)

    Book  Google Scholar 

  26. I.I.I. Cowell, E.W. Muir, S.W. Keszler, D.A. and J.F. Wager, Barrier height estimation of asymmetric metal–insulator–metal tunneling diodes. J. Appl. Phys. 114(21), 213703 (2013)

    Article  ADS  Google Scholar 

  27. E.H. Rhoderick, Metal–semiconductor contacts. IEEE Proc. I Solid State Electron Devices 129(1), 1 (1982)

    Article  Google Scholar 

  28. R. William, Smythe Static and Dynamic Electricity, Chap IV (McGraw-Hill Book Company Inc., New York, 1950)

    Google Scholar 

  29. E.W. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015)

    Article  Google Scholar 

  30. C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, H. Qian, Conduction mechanisms, dynamics and stability in ReRAMs. Microelectron. Eng. 187, 121–133 (2018)

    Google Scholar 

  31. F.-C. Chiu, A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014)

    Google Scholar 

  32. R.H. Fowler, L. Nordheim, 1928. Electron emission in intense electric fields. Proc. R. Soc. Lond. A Ser. Contain. Pap. Math. Phys. Charact. 119(781), 173–181

    Article  ADS  Google Scholar 

  33. M. Janousch, G.I. Meijer, U. Staub, B. Delley, S.F. Karg, B.P. Andreasson, Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19(17), 2232–2235 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeetendra Singh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Raj, B. Tunnel current model of asymmetric MIM structure levying various image forces to analyze the characteristics of filamentary memristor. Appl. Phys. A 125, 203 (2019). https://doi.org/10.1007/s00339-019-2482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2482-3

Navigation